No Arabic abstract
The prompt $(t siml 0.16$ days) light curve and initial 9-th magnitude optical flash from GRB 990123 can be attributed to a reverse external shock, or possibly to internal shocks. We discuss the time decay laws and spectral slopes expected under various dynamical regimes, and discuss the constraints imposed on the model by the observations, arguing that they provide strongly suggestive evidence for features beyond those in the simple standard model. The longer term afterglow behavior is discussed in the context of the forward shock, and it is argued that, if the steepening after three days is due to a jet geometry, this is likely to be due to jet-edge effects, rather than sideways expansion.
Gamma-ray bursts (GRBs) are thought to result from the interaction of an extremely relativistic outflow interacting with a small amount of material surrounding the site of the explosion. Multi-wavelength observations covering the gamma-ray to radio wavebands allow investigations of this `fireball model. On 23 January 1999 optical emission was detected while the gamma-ray burst was still underway. Here we report the results of gamma-ray, optical/infra-red, sub-mm, mm and radio observations of this burst and its afterglow, which indicate that the prompt and afterglow emissions from GRB 990123 are associated with three distinct regions in the fireball. The afterglow one day after the burst has a much lower peak frequency than those of previous bursts; this explains the short-lived nature of the radio emission, which is not expected to reappear. We suggest that such differences reflect variations in the magnetic-field strengths in the afterglow emitting regions.
We report on the BeppoSAX data analysis of the afterglow of Gamma-Ray Burst (GRB) 990123, one of the brightest GRBs detected by BeppoSAX. Mainly due to its exceptional brightness, this is the only source for which the Wide Field Cameras have allowed an early detection of the X-ray afterglow between about 20 and 60 min after the GRB trigger. Besides, again for the first time, high-energy emission from the afterglow was detected up to 60 keV. For the X-ray afterglow we found a power-law decay with index alpha = 1.46 +/- 0.04; the spectrum has a power-law shape with photon index Gamma about 1.9. The backward extrapolation of the afterglow decay smoothly reconnects with the late GRB emission, thus suggesting that both emissions are produced by the same phenomenon. An extensive set of multiwavelength observations for the GRB 990123 afterglow made during the BeppoSAX pointing was collected from the literature. The hard X-ray to radio range coverage allowed to construct a spectral flux distribution and to perform an analysis of the GRB afterglow in the context of the fireball model. We also report the results of temporal and spectral analysis of an X-ray source serendipitously observed about 22 arcmin north of the GRB afterglow, along with the optical spectroscopy of its possible counterpart to establish the nature of this source.
We present a multiwavelength analysis of Swift GRB 061007. The 2-m robotic Faulkes Telescope South (FTS) began observing 137 s after the onset of the gamma-ray emission, when the optical counterpart was already decaying from R 10.3 mag, and continued observing for the next 5.5 hours. These observations begin during the final gamma-ray flare and continue through and beyond a long, soft tail of gamma-ray emission whose flux shows an underlying simple power-law decay identical to that seen at optical and X-ray wavelengths, with temporal slope alpha 1.7 This remarkably simple decay in all of these bands is rare for Swift bursts, which often show much more complex light curves. We suggest the afterglow emission begins as early as 30-100 s and is contemporaneous with the on-going variable prompt emission from the central engine, but originates from a physically distinct region dominated by the forward shock. The afterglow continues unabated until at least 10^5 s showing no evidence of a break. The observed multiwavelength evolution of GRB 061007 is explained by an expanding fireball whose optical, X-ray and late-time gamma-ray emission is dominated by emission from a forward shock with typical synchrotron frequency, nu_m, that is already below the optical band as early as t=137 s and a cooling frequency, nu_c, above the X-ray band to at least t=10^5 s. In contrast, the typical frequency of the reverse shock lies in the radio band at early time. We suggest that the unexpected lack of bright optical flashes from the majority of Swift GRBs may be explained with a low nu_m originating from small microphysics parameters, epsilon_e and epsilon_B. (Abridged)
We present extensive radio and millimeter observations of the unusually bright GRB 130427A at z=0.340, spanning 0.67 to 12 days after the burst. Taken in conjunction with detailed multi-band UV, optical, NIR, and X-ray observations we find that the broad-band afterglow emission is composed of distinct reverse shock and forward shock contributions. The reverse shock emission dominates in the radio/millimeter and at <0.1 days in the UV/optical/NIR, while the forward shock emission dominates in the X-rays and at >0.1 days in the UV/optical/NIR. We further find that the optical and X-ray data require a Wind circumburst environment, pointing to a massive star progenitor. Using the combined forward and reverse shock emission we find that the parameters of the burst are an isotropic kinetic energy of E_Kiso~2e53 erg, a mass loss rate of Mdot~3e-8 Msun/yr (for a wind velocity of 1,000 km/s), and a Lorentz factor at the deceleration time of Gamma(200s)~130. Due to the low density and large isotropic energy, the absence of a jet break to ~15 days places only a weak constraint on the opening angle of theta_j>2.5 deg, and therefore a total energy of E_gamma+E_K>1.2e51 erg, similar to other GRBs. The reverse shock emission is detectable in this burst due to the low circumburst density, which leads to a slow cooling shock. We speculate that this is a required property for the detectability of reverse shocks in the radio and millimeter bands. Following on GRB 130427A as a benchmark event, observations of future GRBs with the exquisite sensitivity of VLA and ALMA, coupled with detailed modeling of the reverse and forward shock contributions will test this hypothesis.
We present comprehensive multiwavelength radio to X-ray observations of GRB 181201A spanning from $approx150$ s to $approx163$ days after the burst, comprising the first joint ALMA-VLA-GMRT observations of a gamma-ray burst (GRB) afterglow. The radio and mm-band data reveal a distinct signature at $approx3.9$ days, which we interpret as reverse shock (RS) emission. Our observations present the first time that a single radio-frequency spectral energy distribution can be decomposed directly into RS and forward shock (FS) components. We perform detailed modeling of the full multiwavelength data set, using Markov Chain Monte Carlo sampling to construct the joint posterior density function of the underlying physical parameters describing the RS and FS synchrotron emission. We uncover and account for all degeneracies in the model parameters. The joint RS-FS modeling reveals a weakly magnetized ($sigmaapprox3times10^{-3}$), mildly relativistic RS, from which we derive an initial bulk Lorentz factor of $Gamma_0approx103$ for the GRB jet. Our results support the hypothesis that low-density environments are conducive to the observability of RS emission. We compare our observations to other events with strong RS detections, and find a likely observational bias selecting for longer lasting, non-relativistic reverse shocks. We present and begin to address new challenges in modeling posed by the present generation of comprehensive, multi-frequency data sets.