Do you want to publish a course? Click here

Luminous X-ray Flares from Low Mass X-ray Binary Candidates in the Early-Type Galaxy NGC 4697

91   0   0.0 ( 0 )
 Added by Gregory Sivakoff
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report results of the first search specifically targeting short-timescale X-ray flares from low-mass X-ray binaries in an early-type galaxy. A new method for flare detection is presented. In NGC 4697, the nearest, optically luminous, X-ray faint elliptical galaxy, 3 out of 157 sources are found to display flares at >99.95% probability, and all show more than one flare. Two sources are coincident with globular clusters and show flare durations and luminosities similar to (but larger than) Type-I X-ray superbursts found in Galactic neutron star (NS) X-ray binaries (XRBs). The third source shows more extreme flares. Its flare luminosity (~6E39 erg/s) is very super-Eddington for an NS and is similar to the peak luminosities of the brightest Galactic black hole (BH) XRBs. However, the flare duration (~70 s) is much shorter than are typically seen for outbursts reaching those luminosities in Galactic BH sources. Alternative models for the flares are considered.

rate research

Read More

Chandra X-ray observations routinely resolve tens to hundreds of low-mass X-ray binaries (LMXBs) per galaxy in nearby massive early-type galaxies. These studies have raised important issues regarding the behavior of this population of remnants of the once massive stars in early-type galaxies, namely the connection between LMXBs and globular clusters (GCs) and the nature of the LMXB luminosity function (LF). In this paper, we combine five epochs of Chandra observations and one central field Hubble Space Telescope Advance Camera for Surveys observation of NGC 4697, one of the nearest, optically luminous elliptical (E6) galaxies, to probe the GC-LMXB connection and LMXB-LF down to a detection/completeness limit of (0.6/1.4) x 10^{37} ergs/s. We detect 158 sources, present their luminosities and hardness ratios, and associate 34 LMXBs with GCs. We confirm that GCs with higher encounter rates (Gamma_h) and redder colors (higher metallicity Z) are more likely to contain GCs, and find that the expected number of LMXBs per GC is proportional to Gamma_h^{0.79+0.18/-0.15} Z^{0.50+0.20/-0.18}, consistent with fainter X-ray sources in Galactic GCs and LMXBs in Virgo early-type galaxies. Approximately 11+/-2% / 8 +/-2% of GCs in NGC 4697 contain an LMXB at the detection/completeness limit. We propose that the larger proportion of metal-rich GCs in NGC 4697 compared to the Milky Way explains why these fractions are much higher than those of the Milky Way at similar luminosities. We confirm that a broken power-law is the best fit to the LMXB-LF, although we cannot rule out a cutoff power-law, and argue that this raises the possibility that there is no universal form for the LMXB-LF in early-type galaxies. We find marginal evidence for different LFs of LMXBs in GCs and the field and different spectra of GC-LMXBs and Field-LMXBs.
Multi-epoch Chandra X-ray observations of nearby massive early-type galaxies open up the study of an important regime of low-mass X-ray binary (LMXB) behavior -- long term variability. In a companion paper, we report on the detection of 158 X-ray sources down to a detection/completeness limit of 0.6/1.4 x 10^{37} ergs/s using five Chandra observations of NGC 4697, one of the nearest (11.3 Mpc), optically luminous (M_B < -20), elliptical (E6) galaxy. In this paper, we report on the variability of LMXB candidates measured on timescales from seconds to years. At timescales of seconds to hours, we detect five sources with significant variability. Approximately 7% of sources show variability between any two observations, and 16+/-4% of sources do not have a constant luminosity over all five observations. Among variable sources, we identify eleven transient candidates, with which we estimate that if all LMXBs in NGC 4697 are long-term transients then they are on for ~ 100 yr and have a 7% duty cycle. These numbers are consistent with those found for brighter LMXBs in M87 and NGC 1399, which suggests that there does not appear to be a measurable difference between the outburst durations of long-term transient neutron star LMXBs and black hole LMXBs. We discuss in detail a transient supersoft source, whose properties are not easily explained by standard explanations for supersoft sources.
We present the results of an X-ray mass analysis of the early-type galaxy NGC 4636, using Chandra data. We have compared the X-ray mass density profile with that derived from a dynamical analysis of the systems globular clusters (GCs). Given the observed interaction between the central active galactic nucleus and the X-ray emitting gas in NGC 4636, we would expect to see a discrepancy in the masses recovered by the two methods. Such a discrepancy exists within the central ~10kpc, which we interpret as the result of non-thermal pressure support or a local inflow. However, over the radial range ~10-30kpc, the mass profiles agree within the 1-sigma errors, indicating that even in this highly disturbed system, agreement can be sought at an acceptable level of significance over intermediate radii, with both methods also indicating the need for a dark matter halo. However, at radii larger than 30kpc, the X-ray mass exceeds the dynamical mass, by a factor of 4-5 at the largest disagreement. A Fully Bayesian Significance Test finds no statistical reason to reject our assumption of velocity isotropy, and an analysis of X-ray mass profiles in different directions from the galaxy centre suggests that local disturbances at large radius are not the cause of the discrepancy. We instead attribute the discrepancy to the paucity of GC kinematics at large radius, coupled with not knowing the overall state of the gas at the radius where we are reaching the group regime (>30kpc), or a combination of the two.
As the Chandra X-ray Observatory mission matures, increasing numbers of nearby galaxies are being observed multiple times, sampling the variability of extragalactic X-ray binaries on timescales extending from seconds to years. We present results on luminous low-mass X-ray binaries from several early-type galaxies. We show that instantaneous LMXB luminosity functions of early-type galaxies do not significantly change between observations; a relatively low fraction of sources are strongly variable on <~ 5 yr timescales. We discuss the implications that a relatively small number of transient LMXBs are being discovered in early-type galaxies.
355 - S. Migliari 2003
We report the discovery of type-I X-ray bursts from the low-mass X-ray binary 4U 1708-40 during the 100 ks observation performed by BeppoSAX on 1999 August 15-16. Six X-ray bursts have been observed. The unabsorbed 2-10 keV fluxes of the bursts range from ~ (3-9)x10^(-10) erg cm^(-2)s^(-1). A correlation between peak flux and fluence of the bursts is found, in agreement with the behaviour observed in other similar sources. There is a trend of the burst flux to increase with the time interval from the previous burst. From the value of the persistent flux we infer a mass accretion rate Mdot~7x10^(-11) Msun/yr, that may correspond to the mixed hydrogen/helium burning regime triggered by thermally unstable hydrogen. We have also analysed a BeppoSAX observation performed on 2001 August 22 and previous RXTE observations of 4U 1708-40, where no bursts have been observed; we found persistent fluxes of more than a factor of 7 higher than the persistent flux observed during the BeppoSAX observation showing X-ray bursts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا