Do you want to publish a course? Click here

Variable Low-Mass X-ray Binaries in Early-Type Galaxies

171   0   0.0 ( 0 )
 Added by Gregory Sivakoff
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

As the Chandra X-ray Observatory mission matures, increasing numbers of nearby galaxies are being observed multiple times, sampling the variability of extragalactic X-ray binaries on timescales extending from seconds to years. We present results on luminous low-mass X-ray binaries from several early-type galaxies. We show that instantaneous LMXB luminosity functions of early-type galaxies do not significantly change between observations; a relatively low fraction of sources are strongly variable on <~ 5 yr timescales. We discuss the implications that a relatively small number of transient LMXBs are being discovered in early-type galaxies.



rate research

Read More

We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the young early-type galaxy NGC 3384 (~2-5 Gyr) has an excess of luminous field LMXBs (L_X > (5-10) x 10^37 erg/s) per unit K-band luminosity (L_K; a proxy for stellar mass) than the old early-type galaxies NGC 3115 and 3379 (~8-10 Gyr), which results in a factor of ~2-3 excess of LX/LK for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.
We present the X-ray luminosity function (XLF) of low mass X-ray binaries (LMXBs) in the globular clusters (GCs) and fields of seven early-types galaxies. These galaxies are selected to have both deep Chandra observations, which allow their LMXB populations to be observed to X-ray luminosities of $10^{37}-10^{38}$ erg/s, and HST optical mosaics which enable the X-ray sources to be separated into field LMXBs, GC LMXBs, and contaminating background and foreground sources. We find that at all luminosities the number of field LMXBs per stellar mass is similar in these galaxies. This suggests that the field LMXB populations in these galaxies are not effected by the GC specific frequency, and that properties such as binary fraction and the stellar initial mass function are either similar across the sample, or change in a way that does not effect the number of LMXBs. We compare the XLF of the field LMXBs to that of the GC LMXBs and find that they are significantly different with a p-value of $3times10^{-6}$ (equivalent to 4.7$sigma$ for a normal distribution). The difference is such that the XLF of the GC LMXBs is flatter than that of the field LMXBs, with the GCs hosting relatively more bright sources and fewer faint sources. A comparison of the XLF of the metal-rich and metal-poor GCs hints that the metal-poor GCs may have more bright LMXBs, but the difference is not statistically significant.
233 - Wynn C. G. Ho 2020
The application of standard accretion theory to observations of X-ray binaries provides valuable insights into neutron star properties, such as their spin period and magnetic field. However, most studies concentrate on relatively old systems, where the neutron star is in its late propeller, accretor, or nearly spin equilibrium phase. Here we use an analytic model from standard accretion theory to illustrate the evolution of high-mass X-ray binaries early in their life. We show that a young neutron star is unlikely to be an accretor because of the long duration of ejector and propeller phases. We apply the model to the recently discovered ~4000 yr old high-mass X-ray binary XMMU J051342.6-672412 and find that the systems neutron star, with a tentative spin period of 4.4 s, cannot be in the accretor phase and has a magnetic field B > (a few)x10^13 G, which is comparable to the magnetic field of many older high-mass X-ray binaries and is much higher than the spin equilibrium inferred value of (a few)x10^11 G. The observed X-ray luminosity could be the result of thermal emission from a young cooling magnetic neutron star or a small amount of accretion that can occur in the propeller phase.
197 - S. Pellegrini 2010
The past decade has seen a large progress in the X-ray investigation of early-type galaxies of the local universe, and first attempts have been made to reach redshifts z>0 for these objects, thanks to the high angular resolution and sensitivity of the satellites Chandra and XMM-Newton. Major advances have been obtained in our knowledge of the three separate contributors to the X-ray emission, that are the stellar sources, the hot gas and the galactic nucleus. Here a brief outline of the main results is presented, pointing out the questions that remain open, and finally discussing the prospects to solve them with a wide area X-ray survey mission such as WFXT.
(Abridged) Chandra and Hubble ACS observations of 11 early-type galaxies probe the low-mass X-ray binary (LMXB) - globular cluster (GC) connection. We explore the optical properties of 270 GCs with LMXBs and 6,488 GCs without LMXBs. More massive, redder, and more compact GCs are more likely to contain LMXBs. Unlike Galactic GCs, a large number of GCs with LMXBs have half-mass relaxation times > 2.5 Gyr. We fit the dependence of the expected number of LMXBs per GC, lambda_t, on the GC mass M, color (g-z), and half-mass radius r_{h,cor}, and find that lambda_t propto M^{1.24pm0.08} 10^{0.9^{+0.2}_{-0.1} (g-z)} r_{h,cor}^{-2.2^{+0.3}_{-0.4}}. Our fit rules out that the number of LMXBs per GC is linearly proportional to GC mass and that most GCs with high X-ray luminosities contain a single LMXB. The detailed dependence of lambda_t on GC properties appears essentially equivalent to a dependence on the encounter rate Gamma_h and the metallicity Z, lambda_t propto Gamma_h^{0.82pm0.05} Z^{0.39pm0.07}. Our analysis provides strong evidence that dynamical formation and metallicity play the primary roles in determining the presence of an LMXB in extragalactic GCs. The shallower than linear dependence for our sample requires an explanation by theories of dynamical binary formation. The abundance dependence is consistent with a metallicity-dependent variation in the number o neutron stars and black holes per unit mass GC, effects from irradiation induced winds or suppression of magnetic braking in metal-poor stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا