Do you want to publish a course? Click here

CO Line Emission and Absorption from the HL Tau Disk: Where is all the dust?

80   0   0.0 ( 0 )
 Added by Sean Brittain
 Publication date 2005
  fields Physics
and research's language is English
 Authors S. Brittain




Ask ChatGPT about the research

We present high-resolution infrared spectra of HL Tau, a heavily embedded young star. The spectra exhibit broad emission lines of hot CO gas as well as narrow absorption lines of cold CO gas. The column density for this cooler material (7.5+/-0.2 x 10^18 cm-2) indicates a large column of absorbing gas along the line of sight. In dense interstellar clouds, this column density of CO gas is associated with Av~52 magnitudes. However, the extinction toward this source (Av~23) suggests that there is less dust along the line of sight than inferred from the CO absorption data. We discuss three possibilities for the apparent paucity of dust along the line of sight through the flared disk: 1) the dust extinction has been underestimated due to differences in circumstellar grain properties, such as grain agglomeration; 2) the effect of scattering has been underestimated and the actual extinction is much higher; or (3) the line of sight through the disk is probing a gas-rich, dust-depleted region, possibly due to the stratification of gas and dust in a pre-planetary disk.



rate research

Read More

We conducted a detailed radiative transfer modeling of the dust emission from the circumstellar disk around HL Tau. The goal of our study is to derive the surface density profile of the inner disk and its structure. In addition to the Atacama Large Millimeter/submillimeter Array images at Band 3 (2.9mm), Band 6 (1.3mm), and Band 7 (0.87mm), the most recent Karl G. Jansky Very Large Array (VLA) observations at 7mm were included in the analysis. A simulated annealing algorithm was invoked to search for the optimum model. The radiative transfer analysis demonstrates that most radial components (i.e., >6AU) of the disk become optically thin at a wavelength of 7mm, which allows us to constrain, for the first time, the dust density distribution in the inner region of the disk. We found that a homogeneous grain size distribution is not sufficient to explain the observed images at different wavelengths simultaneously, while models with a shallower grain size distribution in the inner disk work well. We found clear evidence that larger grains are trapped in the first bright ring. Our results imply that dust evolution has already taken place in the disk at a relatively young (i.e., ~1Myr) age. We compared the midplane temperature distribution, optical depth, and properties of various dust rings with those reported previously. Using the Toomre parameter, we briefly discussed the gravitational instability as a potential mechanism for the origin of the dust clump detected in the first bright ring via the VLA observations.
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understand the distributions of gas and dust in the disks. The unprecedented, high spatial resolution ALMA observations taken toward HL Tau and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved at the outer part of the HL Tau disk. Previous observations however suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma $beta$ at the disk midplane is $beta_0 simeq 2 times 10^4$ under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.
Outflowing motions, whether a wind launched from the disk, a jet launched from the protostar, or the entrained molecular outflow, appear to be an ubiquitous feature of star formation. These outwards motions have a number of root causes, and how they manifest is intricately linked to their environment as well as the process of star formation itself. Using the ALMA Science Verification data of HL Tau, we investigate the high velocity molecular gas being removed from the system as a result of the star formation process. We aim to place these motions in context with the optically detected jet, and the disk. With these high resolution ($sim 1$) ALMA observations of CO (J=1-0), we quantify the outwards motions of the molecular gas. We find evidence for a bipolar outwards flow, with an opening angle, as measured in the red-shifted lobe, starting off at 90$^circ$, and narrowing to 60$^circ$ further from the disk, likely because of magnetic collimation. Its outwards velocity, corrected for inclination angle is of order 2.4 km s$^{-1}$.
90 - L. Testi 2015
Recent ALMA images of HL Tau show gaps in the dusty disk that may be caused by planetary bodies. Given the young age of this system, if confirmed, this finding would imply very short timescales for planet formation, probably in a gravitationally unstable disk. To test this scenario, we searched for young planets by means of direct imaging in the L-band using the Large Binocular Telescope Interferometer mid-infrared camera. At the location of two prominent dips in the dust distribution at ~70AU (~0.5) from the central star we reach a contrast level of ~7.5mag. We did not detect any point source at the location of the rings. Using evolutionary models we derive upper limits of ~10-15MJup at <=0.5-1Ma for the possible planets. With these sensitivity limits we should have been able to detect companions sufficiently massive to open full gaps in the disk. The structures detected at mm-wavelengths could be gaps in the distributions of large grains on the disk midplane, caused by planets not massive enough to fully open gaps. Future ALMA observations of the molecular gas density profile and kinematics as well as higher contrast infrared observations may be able to provide a definitive answer.
We have imaged the disc of the young star HL Tau using the VLA at 1.3 cm, with 0.08 resolution (as small as the orbit of Jupiter). The disc is around half the stellar mass, assuming a canonical gas-mass conversion from the measured mass in large dust grains. A simulation shows that such discs are gravitationally unstable, and can fragment at radii of a few tens of AU to form planets. The VLA image shows a compact feature in the disc at 65 AU radius (confirming the `nebulosity of Welch et al. 2004), which is interpreted as a localised surface density enhancement representing a candidate proto-planet in its earliest accretion phase. If correct, this is the first image of a low-mass companion object seen together with the parent disc material out of which it is forming. The object has an inferred gas plus dust mass of approximately 14 M(Jupiter), similar to the mass of a proto-planet formed in the simulation. The disc instability may have been enhanced by a stellar flyby: the proper motion of the nearby star XZ Tau shows it could have recently passed the HL Tau disc as close as ~600 AU.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا