No Arabic abstract
We conducted a detailed radiative transfer modeling of the dust emission from the circumstellar disk around HL Tau. The goal of our study is to derive the surface density profile of the inner disk and its structure. In addition to the Atacama Large Millimeter/submillimeter Array images at Band 3 (2.9mm), Band 6 (1.3mm), and Band 7 (0.87mm), the most recent Karl G. Jansky Very Large Array (VLA) observations at 7mm were included in the analysis. A simulated annealing algorithm was invoked to search for the optimum model. The radiative transfer analysis demonstrates that most radial components (i.e., >6AU) of the disk become optically thin at a wavelength of 7mm, which allows us to constrain, for the first time, the dust density distribution in the inner region of the disk. We found that a homogeneous grain size distribution is not sufficient to explain the observed images at different wavelengths simultaneously, while models with a shallower grain size distribution in the inner disk work well. We found clear evidence that larger grains are trapped in the first bright ring. Our results imply that dust evolution has already taken place in the disk at a relatively young (i.e., ~1Myr) age. We compared the midplane temperature distribution, optical depth, and properties of various dust rings with those reported previously. Using the Toomre parameter, we briefly discussed the gravitational instability as a potential mechanism for the origin of the dust clump detected in the first bright ring via the VLA observations.
The polarimetric observations on the protoplanetary disk around HL Tau have shown the scattering-induced polarization at ALMA Band 7, which indicates that the maximum dust size is $sim 100~{rm mu m}$, while the Spectral Energy Distribution (SED) has suggested that the maximum dust size is $sim$ mm. To solve the contradiction, we investigate the impact of differential settling of dust grains on the SED and polarization. If the disk is optically thick, longer observing wavelength traces more interior layer which would be dominated by larger grains. We find that, the SED of the center part of the HL Tau disk can be explained with mm-sized grains for a broad range of turbulence strength, while $160~{rm mu m}$-sized grains can explain barely only if the turbulence strength parameter $alpha_{rm t}$ is lower than $10^{-5}$. We also find that the observed polarization fraction can be potentially explained with the maximum dust size of $1~{rm mm}$ if $alpha_{rm t}lesssim10^{-5}$, although models with $160~{rm mu m}$-sized grains are also acceptable. However, if the maximum dust size is $sim3~{rm mm}$, the simulated polarization fraction is too low to explain the observations even if the turbulence strength is extremely small, indicating the maximum dust size of $lesssim1$ mm. The degeneracy between 100 ${rm mu m}$-sized and mm-sized grains can be solved by improving the ALMA calibration accuracy or polarimetric observations at (sub-)cm wavelengths.
We report an analysis of the dust disk around DM~Tau, newly observed with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm. The ALMA observations with high sensitivity (8.4~$mu$Jy/beam) and high angular resolution (35~mas, 5.1~au) detect two asymmetries on the ring at $rsim$20~au. They could be two vortices in early evolution, the destruction of a large scale vortex, or double continuum emission peaks with different dust sizes. We also found millimeter emissions with $sim$50~$mu$Jy (a lower limit dust mass of 0.3~$M_{rm Moon}$) inside the 3-au ring. To characterize these emissions, we modeled the spectral energy distribution (SED) of DM~Tau using a Monte Carlo radiative transfer code. We found that an additional ring at $r=$ 1~au could explain both the DM~Tau SED and the central point source. The disk midplane temperature at the 1-au ring calculated in our modeling is less than the typical water sublimation temperature of 150~K, prompting the possibility of forming small icy planets there.
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understand the distributions of gas and dust in the disks. The unprecedented, high spatial resolution ALMA observations taken toward HL Tau and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved at the outer part of the HL Tau disk. Previous observations however suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma $beta$ at the disk midplane is $beta_0 simeq 2 times 10^4$ under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.
We present high-resolution infrared spectra of HL Tau, a heavily embedded young star. The spectra exhibit broad emission lines of hot CO gas as well as narrow absorption lines of cold CO gas. The column density for this cooler material (7.5+/-0.2 x 10^18 cm-2) indicates a large column of absorbing gas along the line of sight. In dense interstellar clouds, this column density of CO gas is associated with Av~52 magnitudes. However, the extinction toward this source (Av~23) suggests that there is less dust along the line of sight than inferred from the CO absorption data. We discuss three possibilities for the apparent paucity of dust along the line of sight through the flared disk: 1) the dust extinction has been underestimated due to differences in circumstellar grain properties, such as grain agglomeration; 2) the effect of scattering has been underestimated and the actual extinction is much higher; or (3) the line of sight through the disk is probing a gas-rich, dust-depleted region, possibly due to the stratification of gas and dust in a pre-planetary disk.
We compare line emission calculated from theoretical disk models with optical to sub-millimeter wavelength observational data of the gas disk surrounding TW Hya and infer the spatial distribution of mass in the gas disk. The model disk that best matches observations has a gas mass ranging from $sim10^{-4}-10^{-5}$ms for $0.06{rm AU} <r<3.5$AU and $sim 0.06$ms for $ 3.5 {rm AU} <r<200$AU. We find that the inner dust hole ($r<3.5$AU) in the disk must be depleted of gas by $sim 1-2$ orders of magnitude compared to the extrapolated surface density distribution of the outer disk. Grain growth alone is therefore not a viable explanation for the dust hole. CO vibrational emission arises within $rsim 0.5$AU from thermal excitation of gas. [OI] 6300AA and 5577AA forbidden lines and OH mid-infrared emission are mainly due to prompt emission following UV photodissociation of OH and water at $rlesssim0.1$AU and at $rsim 4$AU. [NeII] emission is consistent with an origin in X-ray heated neutral gas at $rlesssim 10$AU, and may not require the presence of a significant EUV ($h u>13.6$eV) flux from TW Hya. H$_2$ pure rotational line emission comes primarily from $rsim 1-30$AU. [OI]63$mu$m, HCO$^+$ and CO pure rotational lines all arise from the outer disk at $rsim30-120$AU. We discuss planet formation and photoevaporation as causes for the decrease in surface density of gas and dust inside 4 AU. If a planet is present, our results suggest a planet mass $sim 4-7$M$_J$ situated at $sim 3$AU. Using our photoevaporation models and the best surface density profile match to observations, we estimate a current photoevaporative mass loss rate of $4times10^{-9}$ms yr$^{-1}$ and a remaining disk lifetime of $sim 5$ million years.