No Arabic abstract
In a recent series of three papers, Belokurov, Evans, and Le Du, and Evans and Belokurov, reanalysed the MACHO collaboration data and gave alternative sets of microlensing events and an alternative optical depth to microlensing toward the Large Magellanic Cloud (LMC). Even though they examined less than 0.2% of the data they claimed that by using a neural net program they had reliably selected a better (and smaller) set of microlensing candidates. Estimating the optical depth from this smaller set, they claim that the MACHO collaboration overestimated the optical depth by a significant factor and that the MACHO microlensing experiment is consistent with lensing by known stars in the Milky Way and LMC. As we show below, the analysis by these authors contains several errors which render their conclusions meaningless. Their efficiency analysis is clearly in error, and since they did not search through the entire MACHO dataset, they do not know how many microlensing events their neural net would find in the data or what optical depth their method would give. Examination of their selected events suggests that their method misses low S/N events and thus would have lower efficiency than the MACHO selection criteria. In addition, their method is likely to give many more false positives (non-lensing events identified as lensing). Both effects would increase their estimated optical depth. Finally, we note that the EROS discovery that LMC event-23 is a variable star reduces the MACHO collaboration estimates of optical depth and Macho halo fraction by around 8%, and does open the question of additional contamination.
We report on our search for microlensing towards the Large Magellanic Cloud (LMC). Analysis of 5.7 years of photometry on 11.9 million stars in the LMC reveals 13 - 17 microlensing events. This is significantly more than the $sim$ 2 to 4 events expected from lensing by known stellar populations. The timescales ($that$) of the events range from 34 to 230 days. We estimate the microlensing optical depth towards the LMC from events with $2 < that < 400$ days to be 1.2 ^{+0.4}_ {-0.3} ten{-7}$, with an additional 20% to 30% of systematic error. The spatial distribution of events is mildly inconsistent with LMC/LMC disk self-lensing, but is consistent with an extended lens distribution such as a Milky Way or LMC halo. Interpreted in the context of a Galactic dark matter halo, consisting partially of compact objects, a maximum likelihood analysis gives a MACHO halo fraction of 20% for a typical halo model with a 95% confidence interval of 8% to 50%. A 100% MACHO halo is ruled out at the 95% C.L. for all except our most extreme halo model. Interpreted as a Galactic halo population, the most likely MACHO mass is between $ 0.15 msun$ and $ 0.9 msun$, depending on the halo model, and the total mass in MACHOs out to 50 kpc is found to be 9+4-3 10^{10} msun, independent of the halo model. These results are marginally consistent with our previous results, but are lower by about a factor of two. Besides a larger data set, this work also includes an improved efficiency determination, improved likelihood analysis, and more thorough testing of systematic errors, especially with respect to the treatment of potential backgrounds to microlensing, such as supernovae in galaxies behind the LMC. [Abridged]
We report on the identification of the lens responsible for microlensing event MACHO-LMC-20. As part of a textit{Spitzer}/IRAC program conducting mid-infrared follow-up of the MACHO Large Magellanic Cloud microlensing fields, we discovered a significant flux excess at the position of the source star for this event. These data, in combination with high resolution near-infrared textit{Magellan}/PANIC data has allowed us to classify the lens as an early M dwarf in the thick disk of the Milky Way, at a distance of $sim 2$ kpc. This is only the second microlens to have been identified, the first also being a M dwarf star in the disk. Together, these two events are still consistent with the expected frequency of nearby stars in the Milky Way thin and thick disks acting as lenses.
We review recent gravitational microlensing results from the EROS, MACHO, and OGLE collaborations, and present some details of the very latest MACHO results toward the Galactic Bulge. The MACHO collaboration has now discovered in excess of 40 microlensing events toward the Galactic Bulge during the 1993 observing season. A preliminary analysis of this data suggests a much higher microlensing optical depth than predicted by standard galactic models suggesting that these models will have to be revised. This may have important implications for the structure of the Galaxy and its dark halo. Also shown are MACHO data of the first microlensing event ever detected substantially before peak amplification, the first detection of parallax effects in a microlensing event, and the first caustic crossing to be resolved in a microlensing event.
We present the lightcurves of 21 gravitational microlensing events from the first six years of the MACHO Project gravitational microlensing survey which are likely examples of lensing by binary systems. These events were manually selected from a total sample of ~350 candidate microlensing events which were either detected by the MACHO Alert System or discovered through retrospective analyses of the MACHO database. At least 14 of these 21 events exhibit strong (caustic) features, and 4 of the events are well fit with lensing by large mass ratio (brown dwarf or planetary) systems, although these fits are not necessarily unique. The total binary event rate is roughly consistent with predictions based upon our knowledge of the properties of binary stars, but a precise comparison cannot be made without a determination of our binary lens event detection efficiency. Towards the Galactic bulge, we find a ratio of caustic crossing to non-caustic crossing binary lensing events of 12:4, excluding one event for which we present 2 fits. This suggests significant incompleteness in our ability to detect and characterize non-caustic crossing binary lensing. The distribution of mass ratios, N(q), for these binary lenses appears relatively flat. We are also able to reliably measure source-face crossing times in 4 of the bulge caustic crossing events, and recover from them a distribution of lens proper motions, masses, and distances consistent with a population of Galactic bulge lenses at a distance of 7 +/- 1 kpc. This analysis yields 2 systems with companions of ~0.05 M_sun.
We present photometry and analysis of the microlensing alert MACHO 96-LMC-2. The ~3% photometry provided by the Global Microlensing Alert Network follow--up effort reveals a periodic modulation in the lightcurve. We attribute this to binarity of the lensed source. Microlensing fits to a rotating binary source magnified by a single lens converge on two minima, separated by delta chi^2 ~ 1. The most significant fit X1 predicts a primary which contributes ~100% of the light, a dark secondary, and an orbital period (T) of 9.2 days. The second fit X2 yields a binary source with two stars of roughly equal mass and luminosity, and T = 21.2 days. The lensed object appears to lie on the upper LMC main sequence. We estimate the mass of the primary component of the binary system, M ~2 M_sun. For the preferred model X1, we explore the range of dark companions by assuming 0.1 M_sun and 1.4 M_sun objects in models X1a and X1b, respectively. We find lens velocities projected to the LMC in these models of v^hat_X1a = 18.3 +/- 3.1 km/s and v^hat_X1b = 188 +/- 32 k/ms. In both these cases, a likelihood analysis suggests an LMC lens is preferred over a Galactic halo lens, although only marginally so in model X1b. We also find v^hat_X2 = 39.6 +/- 6.1 k/ms, where the likelihood for the lens location is strongly dominated by the LMC disk. In all cases, the lens mass is consistent with that of an M-dwarf. The LMC self-lensing rate contributed by 96-LMC-2 is consistent with model self-lensing rates. (Abridged)