No Arabic abstract
(Abridged) We consider models of gas giant planets forming in protoplanetary disks consisting of solid cores with gaseous envelopes in contact with their critical Hill spheres while accreting gas from the surrounding disk.We suppose the luminosity derives from gas accretion alone.We label such models as type A and follow their evolution which may occur on a time scale similar to the protostellar disk lifetime until rapid gas accretion. We consider another set of models, we label type B, with a free surface, powered by gravitational contraction, while accreting through a disk.We find these models rapidly attain a radius <~ 2x10^(10)cm without subsequent expansion.We speculate that giant planet formation is initially described by models of type A, until at the onset of rapid gas accretion, there is a transition to models of type B. Protoplanet migration in standard models tends to be most effective near this transition where it also changes from type I to type II.If a mechanism prevents type I migration of low mass protoplanets, a rapid inward migration might occur near the transitional mass regime. Such protoplanets would end up in the inner disk regions undergoing type II migration and further accretion potentially becoming sub Jovian close orbiting planets. Noting that dustier more massive cores spend longer at a larger transitional mass where faster migration is expected, these may be more prone to end in close orbiters.We find the luminosity of the protoplanets during the later stages is dominated by the circumplanetary disk and protoplanet disk boundary layer.For one Jupiter mass the luminosity range is 10^-(1.5-4) L_sun$ depending on the evolutionary stage and external conditions.
Most analytic work to date on protostellar disks has focused on those in isolation from their environments. However, observations are now beginning to probe the earliest, most embedded phases of star formation, during which disks are rapidly accreting from their parent cores and cannot be modeled in isolation. We present a simple, one-zone model of protostellar accretion disks with high mass infall rates. Our model combines a self-consistent calculation of disk temperatures with an approximate treatment of angular momentum transport via two mechanisms. We use this model to survey the properties of protostellar disks across a wide range of stellar masses and evolutionary times, and make predictions for disks masses, sizes, spiral structure, and fragmentation that will be directly testable by future large-scale surveys of deeply embedded disks. We define a dimensionless accretion-rotation parameter which, in conjunction with the disks temperature, controls the disk evolution. We track the dominant mode of angular momentum transport, and demonstrate that for stars with final masses greater than roughly one solar mass, gravitational instabilities are the most important mechanism as most of the mass accumulates. We predict that binary formation through disk fission, fragmentation of the disk into small objects, and spiral arm strength all increase in importance to higher stellar masses.
The mechanisms of planet formation are still under debate. We know little about how planets form, even if more than 4000 exoplanets have been detected to date. Recent investigations target the cot of newly born planets: the protoplanetary disk. At the first stages of their life, exoplanets still accrete material from the gas-rich disk in which they are embedded. Transitional disks are indeed disks that show peculiarities, such as gaps, spiral arms, and rings, which can be connected to the presence of substellar companions. To investigate what is responsible for these features, we selected all the known transitional disks in the solar neighborhood (<200 pc) that are visible from the southern hemisphere. We conducted a survey of 11 transitional disks (TDs) with the SPHERE instrument at the VLT. This is the largest Halpha survey that has been conducted so far to look for protoplanets. The observations were performed with the Halpha filter of ZIMPOL in order to target protoplanets that are still in the accretion stage. All the selected targets are very young stars, less than 20 Myr, and show low extinction in the visible. We reduced the ZIMPOL pupil stabilized data by applying the method of the angular spectral differential imaging (ASDI), which combines both techniques. The datacubes are composed of the CntHalpha and the narrow band filter Halpha, which are taken simultaneously to permit the suppression of the speckle pattern. The principal component analysis (PCA) method was employed for the reduction of the data. For each dataset, we derived the 5sigma contrast limit and converted it in upper limits on the accretion luminosity. We do not detect any new accreting substellar companions around the targeted transition disks down to an average contrast of 12 magnitudes at 0.2 arcsec from the central star (continues in the manuscript).
Planets are often invoked as the cause of inferred gaps or inner clearings in transition disks. These putative planets would interact with the remnant circumstellar disk, accreting gas and generating substantial luminosity. Here I explore the expected appearance of accreting protoplanets at a range of evolutionary states. I compare synthetic spectral energy distributions with the handful of claimed detections of substellar-mass companions in transition disks. While observed fluxes of candidate companions are generally compatible with accreting protoplanets, challenges remain in reconciling the extended structure inferred in observed objects with the compact emission expected from protoplanets or circumplanetary disks. I argue that a large fraction of transition disks should harbor bright protoplanets, and that more may be detected as larger telescopes open up additional parameter space.
Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition discs, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition discs show evidence for the presence of young planets in the form of disc asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15. Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disc clearing. With accurate source positions over multiple epochs spanning 2009 - 2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect H{alpha} emission from the innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into the potential well of an accreting protoplanet.
We have now accumulated a wealth of observations of the planet-formation environment and of mature planetary systems. These data allow us to test and refine theories of gas-giant planet formation by placing constraints on the conditions and timescale of this process. Yet a number of fundamental questions remain unanswered about how protoplanets accumulate material, their photospheric properties and compositions, and how they interact with protoplanetary disks. While we have begun to detect protoplanet candidates during the last several years, we are presently only sensitive to the widest separation, highest mass / accretion rate cases. Current observing facilities lack the angular resolution and inner working angle to probe the few-AU orbital separations where giant planet formation is thought to be most efficient. They also lack the contrast to detect accretion rates that would form lower mass gas giants and ice giants. Instruments and telescopes coming online over the next decade will provide high contrast in the inner giant-planet-forming regions around young stars, allowing us to build a protoplanet census and to characterize planet formation in detail for the first time.