Do you want to publish a course? Click here

Spectral Energy Distributions of Accreting Protoplanets

110   0   0.0 ( 0 )
 Added by Joshua Eisner
 Publication date 2015
  fields Physics
and research's language is English
 Authors J.A. Eisner




Ask ChatGPT about the research

Planets are often invoked as the cause of inferred gaps or inner clearings in transition disks. These putative planets would interact with the remnant circumstellar disk, accreting gas and generating substantial luminosity. Here I explore the expected appearance of accreting protoplanets at a range of evolutionary states. I compare synthetic spectral energy distributions with the handful of claimed detections of substellar-mass companions in transition disks. While observed fluxes of candidate companions are generally compatible with accreting protoplanets, challenges remain in reconciling the extended structure inferred in observed objects with the compact emission expected from protoplanets or circumplanetary disks. I argue that a large fraction of transition disks should harbor bright protoplanets, and that more may be detected as larger telescopes open up additional parameter space.



rate research

Read More

Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition discs, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition discs show evidence for the presence of young planets in the form of disc asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15. Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disc clearing. With accurate source positions over multiple epochs spanning 2009 - 2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect H{alpha} emission from the innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into the potential well of an accreting protoplanet.
The mechanisms of planet formation are still under debate. We know little about how planets form, even if more than 4000 exoplanets have been detected to date. Recent investigations target the cot of newly born planets: the protoplanetary disk. At the first stages of their life, exoplanets still accrete material from the gas-rich disk in which they are embedded. Transitional disks are indeed disks that show peculiarities, such as gaps, spiral arms, and rings, which can be connected to the presence of substellar companions. To investigate what is responsible for these features, we selected all the known transitional disks in the solar neighborhood (<200 pc) that are visible from the southern hemisphere. We conducted a survey of 11 transitional disks (TDs) with the SPHERE instrument at the VLT. This is the largest Halpha survey that has been conducted so far to look for protoplanets. The observations were performed with the Halpha filter of ZIMPOL in order to target protoplanets that are still in the accretion stage. All the selected targets are very young stars, less than 20 Myr, and show low extinction in the visible. We reduced the ZIMPOL pupil stabilized data by applying the method of the angular spectral differential imaging (ASDI), which combines both techniques. The datacubes are composed of the CntHalpha and the narrow band filter Halpha, which are taken simultaneously to permit the suppression of the speckle pattern. The principal component analysis (PCA) method was employed for the reduction of the data. For each dataset, we derived the 5sigma contrast limit and converted it in upper limits on the accretion luminosity. We do not detect any new accreting substellar companions around the targeted transition disks down to an average contrast of 12 magnitudes at 0.2 arcsec from the central star (continues in the manuscript).
We present $L$-band imaging of the PDS 70 planetary system with Keck/NIRC2 using the new infrared pyramid wavefront sensor. We detected both PDS 70 b and c in our images, as well as the front rim of the circumstellar disk. After subtracting off a model of the disk, we measured the astrometry and photometry of both planets. Placing priors based on the dynamics of the system, we estimated PDS 70 b to have a semi-major axis of $20^{+3}_{-4}$~au and PDS 70 c to have a semi-major axis of $34^{+12}_{-6}$~au (95% credible interval). We fit the spectral energy distribution (SED) of both planets. For PDS 70 b, we were able to place better constraints on the red half of its SED than previous studies and inferred the radius of the photosphere to be 2-3~$R_{Jup}$. The SED of PDS 70 c is less well constrained, with a range of total luminosities spanning an order of magnitude. With our inferred radii and luminosities, we used evolutionary models of accreting protoplanets to derive a mass of PDS 70 b between 2 and 4 $M_{textrm{Jup}}$ and a mean mass accretion rate between $3 times 10^{-7}$ and $8 times 10^{-7}~M_{textrm{Jup}}/textrm{yr}$. For PDS 70 c, we computed a mass between 1 and 3 $M_{textrm{Jup}}$ and mean mass accretion rate between $1 times 10^{-7}$ and $5 times~10^{-7} M_{textrm{Jup}}/textrm{yr}$. The mass accretion rates imply dust accretion timescales short enough to hide strong molecular absorption features in both planets SEDs.
105 - S. Berta , D. Lutz , P. Santini 2013
(abridged) Far-infrared Herschel photometry from the PEP and HerMES programs is combined with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields. Based on this rich dataset, we reproduce the restframe UV to FIR ten-colors distribution of galaxies using a superposition of multi-variate Gaussian modes. The median SED of each mode is then fitted with a modified version of the MAGPHYS code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an AGN. The defined Gaussian grouping is also used to identify rare sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z~1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eight other popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 micron detected sources in PEP GOODS fields. AGN appear to be distributed in the stellar mass (M*) vs. star formation rate (SFR) space along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the main sequence. The incidence of warmer star-forming sources grows for objects with higher specific star formation rates (sSFR), and they tend to populate the off-sequence region of the M*-SFR-z space.
115 - J. H. Fan , J. H. Yang , Y. Liu 2016
(Abridged) In this paper, multi-wavelength data are compiled for a sample of 1425 Fermi blazars to calculate their spectral energy distributions (SEDs). A parabolic function, $log( u F_{ u}) = P_1(log u - P_2)^2 + P_3,$ is used for SED fitting. Synchrotron peak frequency ($log u_p$), spectral curvature ($P_1$), peak flux ($ u_{rm p}F_{rm u_p}$), and integrated flux ($ u F_{ u}$) are successfully obtained for 1392 blazars (461 flat spectrum radio quasars-FSRQs, 620 BL Lacs-BLs and 311 blazars of uncertain type-BCUs, 999 sources have known redshifts). Monochromatic luminosity at radio 1.4 GHz, optical R band, X-ray at 1 keV and $gamma$-ray at 1 GeV, peak luminosity, integrated luminosity and effective spectral indexes of radio to optical ($alpha_{rm RO}$), and optical to X-ray ($alpha_{rm OX}$) are calculated. The Bayesian classification is employed to log$ u_{rm p}$ in the rest frame for 999 blazars with available redshift and the results show that 3 components are enough to fit the $log u_{rm p}$ distribution, there is no ultra high peaked subclass. Based on the 3 components, the subclasses of blazars using the acronyms of Abdo et al. (2010a) are classified, and some mutual correlations are also studied. Conclusions are finally drawn as follows: (1) SEDs are successfully obtained for 1392 blazars. The fitted peak frequencies are compared with common sources from samples available (Sambruna et al. 1996, Nieppola et al. 2006, 2008, Abdo et al. 2010a). (2) Blazars are classified as low synchrotron peak sources (LSPs) if $log u_{rm p}$(Hz) $leq 14.0$, intermediate synchrotron peak sources (ISPs) if $14.0 < log u_{rm p}$(Hz) $leq 15.3$, and high synchrotron peak sources (HSPs) if $log u_{rm p}$(Hz) $> 15.3$. (3) $gamma$-ray emissions are strongly correlated with radio emissions. (...)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا