Do you want to publish a course? Click here

Cosmic microwave background constraints on dark energy dynamics: analysis beyond the power spectrum

98   0   0.0 ( 0 )
 Added by Fabio Giovi
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the distribution of the non-Gaussian signal induced by weak lensing on the primary total intensity cosmic microwave background (CMB) anisotropies. Our study focuses on the three point statistics exploiting an harmonic analysis based on the CMB bispectrum. By considering the three multipoles as independent variables, we reveal a complex structure of peaks and valleys determined by the re-projection of the primordial acoustic oscillations through the lensing mechanism. We study the dependence of this system on the expansion rate at the epoch in which the weak lensing power injection is relevant, probing the dark energy equation of state at redshift corresponding to the equivalence with matter or higher ($w_infty$). We evaluate the impact of the bispectrum observable on the CMB capability of constraining the dark energy dynamics. We perform a maximum likelihood analysis by varying the dark energy abundance, the present equation of state $w_0$ and $w_infty$. We show that the projection degeneracy affecting a pure power spectrum analysis in total intensity is broken if the bispectrum is taken into account. For a Planck-like experiment, assuming nominal performance, no foregrounds or systematics, and fixing all the parameters except $w_0$, $w_infty$ and the dark energy abundance, a percent and ten percent precision measure of $w_0$ and $w_infty$ is achievable from CMB data only. These results indicate that the detection of the weak lensing signal by the forthcoming CMB probes may be relevant to gain insight into the dark energy dynamics at the onset of cosmic acceleration.



rate research

Read More

130 - J. R. Bond CITA 1997
We develop two methods for estimating the power spectrum, C_l, of the cosmic microwave background (CMB) from data and apply them to the COBE/DMR and Saskatoon datasets. One method involves a direct evaluation of the likelihood function, and the other is an estimator that is a minimum-variance weighted quadratic function of the data. Applied iteratively, the quadratic estimator is not distinct from likelihood analysis, but is rather a rapid means of finding the power spectrum that maximizes the likelihood function. Our results bear this out: direct evaluation and quadratic estimation converge to the same C_ls. The quadratic estimator can also be used to directly determine cosmological parameters and their uncertainties. While the two methods both require O(N^3) operations, the quadratic is much faster, and both are applicable to datasets with arbitrary chopping patterns and noise correlations. We also discuss approximations that may reduce it to O(N^2) thus making it practical for forthcoming megapixel datasets.
72 - F. Giovi 2003
We consider the influence of the dark energy dynamics at the onset of cosmic acceleration on the Cosmic Microwave Background (CMB) bispectrum, through the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole $l$: we show that it is non-zero in a narrow interval centered at a redshift $z$ satisfying the relation $l/r(z)simeq k_{NL}(z)$, where the wavenumber corresponds to the scale entering the non-linear phase, and $r$ is the cosmological comoving distance. The relevant redshift interval is in the range $0.1lsim zlsim 2$ for multipoles $1000gsimellgsim 100$; the signal amplitude, reflecting the perturbation dynamics, is a function of the cosmological expansion rate at those epochs, probing the dark energy equation of state redshift dependence independently on its present value. We provide a worked example by considering tracking inverse power law and SUGRA Quintessence scenarios, having sensibly different redshift dynamics and respecting all the present observational constraints. For scenarios having the same present equation of state, we find that the effect described above induces a projection feature which makes the bispectra shifted by several tens of multipoles, about 10 times more than the corresponding effect on the ordinary CMB angular power spectrum.
85 - Samuel Leach 2005
We implement and investigate a method for measuring departures from scale-invariance, both scale-dependent as well as scale-free, in the primordial power spectrum of density perturbations using cosmic microwave background (CMB) C_l data and a principal component analysis technique. The primordial power spectrum is decomposed into a dominant scale-invariant Gaussian adiabatic component plus a series of orthonormal modes whose detailed form only depends the noise model for a particular CMB experiment. However, in general these modes are localised across wavenumbers with 0.01 < k < 0.2 Mpc^-1, displaying rapid oscillations on scales corresponding the acoustic peaks where the sensitivity to primordial power spectrum is greatest. The performance of this method is assessed using simulated data for the Planck satellite, and the full cosmological plus power spectrum parameter space is integrated out using Markov Chain Monte Carlo. As a proof of concept we apply this data compression technique to the current CMB data from WMAP, ACBAR, CBI and VSA. We find no evidence for the breaking of scale-invariance from measurements of four PCA mode amplitudes, which is translated to a constraint on the scalar spectral index n_S(k_0=0.04 Mpc^-1)=0.94+-0.04 in accordance with WMAP studies.
233 - George Chapline 2010
An initial state for the observable universe consisting of a finite region with a large vacuum energy will break-up due to near horizon quantum critical fluctuations. This will lead to a Friedmann-like early universe consisting of an expanding cloud of dark energy stars and radiation. In this note we point out that this scenario provides a simple explanation for the present day density of dark matter as well as the level of CMB temperature flucuations. It is also predicted that all dark matter will be clumped on mass scales ~ 10E3 solar masses.
We present a determination by the Archeops experiment of the angular power spectrum of the cosmic microwave background anisotropy in 16 bins over the multipole range l=15-350. Archeops was conceived as a precursor of the Planck HFI instrument by using the same optical design and the same technology for the detectors and their cooling. Archeops is a balloon-borne instrument consisting of a 1.5 m aperture diameter telescope and an array of 21 photometers maintained at ~100 mK that are operating in 4 frequency bands centered at 143, 217, 353 and 545 GHz. The data were taken during the Arctic night of February 7, 2002 after the instrument was launched by CNES from Esrange base (Sweden). The entire data cover ~ 30% of the sky.This first analysis was obtained with a small subset of the dataset using the most sensitive photometer in each CMB band (143 and 217 GHz) and 12.6% of the sky at galactic latitudes above 30 degrees where the foreground contamination is measured to be negligible. The large sky coverage and medium resolution (better than 15 arcminutes) provide for the first time a high signal-to-noise ratio determination of the power spectrum over angular scales that include both the first acoustic peak and scales probed by COBE/DMR. With a binning of Delta(l)=7 to 25 the error bars are dominated by sample variance for l below 200. A companion paper details the cosmological implications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا