An initial state for the observable universe consisting of a finite region with a large vacuum energy will break-up due to near horizon quantum critical fluctuations. This will lead to a Friedmann-like early universe consisting of an expanding cloud of dark energy stars and radiation. In this note we point out that this scenario provides a simple explanation for the present day density of dark matter as well as the level of CMB temperature flucuations. It is also predicted that all dark matter will be clumped on mass scales ~ 10E3 solar masses.
This paper reviews some of the results of the Planck collaboration and shows how to compute the distance from the surface of last scattering, the distance from the farthest object that will ever be observed, and the maximum radius of a density fluctuation in the plasma of the CMB. It then explains how these distances together with well-known astronomical facts imply that space is flat or nearly flat and that dark energy is 69% of the energy of the universe.
A dynamical scalar field represents the simplest generalization of a pure Cosmological Constant as a candidate to explain the recent evidence in favour of the accelerated cosmic expansion. We review the dynamical properties of such a component, and argue that, even if the background expectation value of this field is fixed and the equation of state is the same as a Cosmological Constant, scalar field fluctuations can still be used to distinguish the two components. We compare predicted spectra of Cosmic Microvave Background (CMB) anisotropies in tracking scalar field cosmologies with the present CMB data, in order to get constraints on the amount and equation of state of dark energy. High precision experiments like SNAP, {sc Planck} and {sc SNfactory}, together with the data on Large Scale Structure, are needed to probe this issue with the necessary accuracy. Here we show the intriguing result that, with a strong prior on the value of the Hubble constant today, the assumption of a flat universe, and consistency relations between amplitude and spectral index of primordial gravitational waves, the present CMB data at $1sigma$ give indication of a dark energy equation of state larger than -1, while the ordinary Cosmological Constant is recovered at $2sigma$.
Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint on degree scales. We use the simulated CMB lensing convergence map from the MICE N-body simulation to calibrate our detection strategy for a given void definition and galaxy tracer density. We then identify cosmic voids in DES Year 1 data and stack the Planck 2015 lensing convergence map on their locations, probing the consistency of simulated and observed void lensing signals. When fixing the shape of the stacked convergence profile to that calibrated from simulations, we find imprints at the $3{sigma}$ significance level for various analysis choices. The best measurement strategies based on the MICE calibration process yield $S/N sim 4$ for DES Y1, and the best-fit amplitude recovered from the data is consistent with expectations from MICE ($A sim 1$). Given these results as well as the agreement between them and N-body simulations, we conclude that the previously reported excess integrated Sachs-Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no counterpart in the Planck CMB lensing map.
In this note we investigate the effects of perturbations in a dark energy component with a constant equation of state on large scale cosmic microwave background anisotropies. The inclusion of perturbations increases the large scale power. We investigate more speculative dark energy models with w<-1 and find the opposite behaviour. Overall the inclusion of perturbations in the dark energy component increases the degeneracies. We generalise the parameterization of the dark energy fluctuations to allow for an arbitrary const ant sound speeds and show how constraints from cosmic microwave background experiments change if this is included. Combining cosmic microwave background with large scale structure, Hubble parameter and Supernovae observations we obtain w=-1.02+-0.16 (1 sigma) as a constraint on the equation of state, which is almost independent of the sound speed chosen. With the presented analysis we find no significant constraint on the constant speed of sound of the dark energy component.
We aim to present a tutorial on the detection, parameter estimation and statistical analysis of compact sources (far galaxies, galaxy clusters and Galactic dense emission regions) in cosmic microwave background observations. The topic is of great relevance for current and future cosmic microwave background missions because the presence of compact sources in the data introduces very significant biases in the determination of the cosmological parameters that determine the energy contain, origin and evolution of the universe and because compact sources themselves provide us with important information about the large scale structure of the universe.