No Arabic abstract
The Phoenix Deep Survey is a multi-wavelength galaxy survey based on deep 1.4 GHz radio imaging (Hopkins et al., 2003). The primary goal of this survey is to investigate the properties of star formation in galaxies and to trace the evolution in those properties to a redshift z=1, covering a significant fraction of the age of the Universe. By compiling a sample of star-forming galaxies based on selection at radio wavelengths we eliminate possible biases due to dust obscuration, a significant issue when selecting objects at optical and ultraviolet wavelengths. In this paper, we present the catalogs and results of deep optical (UBVRI) and near-infrared (Ks) imaging of the deepest region of the existing decimetric radio imaging. The observations and data-processing are summarised and the construction of the optical source catalogs described, together with the details of the identification of candidate optical counterparts to the radio catalogs. Based on our UBVRIKs imaging, photometric redshift estimates for the optical counterparts to the radio detections are explored.
(Abridged) The Las Campanas Infrared Survey, based on broad-band optical and near-infrared photometry, is designed to robustly identify a statistically significant and representative sample of evolved galaxies at redshifts z>1. We have completed an H-band imaging survey over 1.1 square degrees of sky in six separate fields. The average 5 sigma detection limit in a four arcsecond diameter aperture is H ~ 20. Here we describe the design of the survey, the observation strategies, data reduction techniques, and object identification procedures. We present sample near-infrared and optical photometric catalogs for objects identified in two survey fields. We perform object detection in all bandpasses and identify ~ 54,000 galaxies over 1,408 square arcminutes of sky in the two fields. Of these galaxies, ~ 14,000 are detected in the H-band and ~ 2,000 have the colors of evolved galaxies, I - H >3, at z > 1. We find that (1) the differential number counts N(m) for the H-band detected objects has a slope of 0.44 at H < 19 and 0.27 for H > 19. In addition, we find that (2) the differential number counts for the H detected red objects has a slope of 0.85 at H < 20 and 0.32 at H > 20, with a mean surface density ~ 3,000 degree^{-2} mag^{-1} at H=20. Finally, we find that (3) galaxies with red optical to near-IR colors (I-H > 3) constitute ~ 20% of the H detected galaxies at H ~ 21, but only 2% at H = 19. We show that red galaxies are strongly clustered, which results in a strong field to field variation in their surface density. Comparisons of observations and predictions based on various formation scenarios indicate that these red galaxies are consistent with mildly evolving early-type galaxies at z ~ 1, although with a significant amount of on-going star formation as indicated by the large scatter in their V-I colors.
Using a deep Australia Telescope Compact Array (ATCA) radio survey covering an area of ~3deg^{2} to a 4sigma sensitivity of ge 100 muJy at 1.4GHz, we study the nature of faint radio galaxies. About 50% of the detected radio sources are identified with an optical counterpart revealed by CCD photometry to m_{R}=22.5 mag. Near-infrared (K-band) data are also available for a selected sample of the radio sources, while spectroscopic observations have been carried out for about 40% of the optically identified sample. These provide redshifts and information on the stellar content. Emission-line ratios imply that most of the emission line sources are star-forming galaxies, with a small contribution (approx 10%) from Sy1/Sy2 type objects. We also find a significant number of absorption line systems, likely to be ellipticals. These dominate at high flux densities (> 1 mJy) but are also found at sub-mJy levels. Using the Balmer decrement we find a visual extinction A_{V}=1.0 for the star-forming faint radio sources. This moderate reddening is consistent with the V-R and R-K colours of the optically identified sources. For emission line galaxies, there is a correlation between the radio power and the Halpha luminosity, in agreement with the result of Benn et al. (1993). This suggests that the radio emission of starburst radio galaxies is a good indicator of star-formation activity.
We present multi-waveband optical imaging data obtained from observations of the Subaru/XMM-Newton Deep Survey (SXDS). The survey field, centered at R.A.=02:18:00, decl.=-05:00:00, has been the focus of a wide range of multi-wavelength observing programs spanning from X-ray to radio wavelengths. A large part of the optical imaging observations are carried out with Suprime-Cam on Subaru Telescope at Mauna Kea in the course of Subaru Telescope Observatory Projects. This paper describes our optical observations, data reduction and analysis procedures employed, and the characteristics of the data products. A total area of 1.22 sqdeg is covered in five contiguous sub-fields, each of which corresponds to a single Suprime-Cam field of view (34x27), in five broad-band filters B, V, Rc, i, z to the depths of B=28.4, V=27.8, Rc=27.7, i=27.7 and z=26.6 (AB, 3-sigma, 2-arcsec aperture). The data are reduced and compiled into five multi-waveband photometric catalogs, separately for each Suprime-Cam pointing. The i-band catalogs contain about 900,000 objects, making the SXDS catalogs one of the largest multi-waveband catalogs in corresponding depth and area coverage. The SXDS catalogs can be used for an extensive range of astronomical applications such as the number density of the Galactic halo stars to the large scale structures at the distant universe. The number counts of galaxies are derived and compared with those of existing deep extragalactic surveys. The optical data, the source catalogs, and configuration files used to create the catalogs are publicly available via the SXDS web page (http://www.naoj.org/Science/SubaruProject/SXDS/index.html)
In this paper we present a new deep, wide-field near-infrared imaging survey. Our J- and K-band observations in four separate fields complement optical BVRI, ultraviolet and spectroscopic observations undertaken as part of the VIMOS-VLT deep survey (VVDS). In total, our survey spans ~400arcmis^2. Our catalogues are reliable in all fields to at least Kvega~20.75 and Jvega~21.50 (defined as the magnitude where object contamination is less than 10% and completeness greater than 90%). Taken together these four fields represents a unique combination of depth, wavelength coverage and area. We describe the complete data reduction process and outline a comprehensive series of tests carried out to characterise the reliability of the final catalogues. We compare the statistical properties of our catalogues with literature compilations. We find that our J- and K-selected galaxy counts are in good agreement with previously published works, as are our (J-K) versus K colour-magnitude diagrams. Stellar number counts extracted from our fields are consistent with a synthetic model of our galaxy. Using the location of the stellar locus in colour-magnitude space and the measured field-to-field variation in galaxy number counts we demonstrate that the absolute accuracy of our photometric calibration is at the 5% level or better. Finally, an investigation of the angular clustering of K- selected extended sources in our survey displays the expected scaling behaviour with limiting magnitude, with amplitudes in each magnitude bin in broad agreement with literature values.
This paper presents new J and Ks data obtained from observations conducted at the ESO 3.5m New Technology Telescope using the SOFI camera. These data were taken as part of the ESO Imaging Survey Deep Public Survey (DPS) and significantly extend the earlier optical/infrared EIS-DEEP survey presented in a previous paper. The DPS-IR survey comprises two observing strategies: shallow Ks observations providing nearly full coverage of pointings with complementary multi-band optical data and deeper J and Ks observations of the central parts of these fields. The DPS-IR survey provides a coverage of roughly 2.1 square degrees in Ks with 0.63 square degrees to fainter magnitudes and also covered in J, over three independent regions of the sky. The goal of the present paper is to describe the observations, the data reduction procedures, and to present the final survey products. The astrometric solution with an estimated accuracy of <0.15 is based on the USNO catalog. The final stacked images presented here number 89 and 272, in J and Ks, respectively, the latter reflecting the larger surveyed area. The J and Ks images were taken with a median seeing of 0.77 and 0.8. The images reach a median 5sigma limiting magnitude of J_AB~23.06 in an aperture of 2, while the corresponding limiting magnitude in Ks_AB is ~21.41 and ~22.16 mag for the shallow and deep strategies. Overall, the observed limiting magnitudes are consistent with those originally proposed. The quality of the data has been assessed by comparing the measured magnitude of sources at the bright end directly with those reported by the 2MASS survey and at the faint end by comparing the counts of galaxies and stars with those of other surveys to comparable depth and to model predictions. The final science-grade catalogs and images are available at CDS.