Do you want to publish a course? Click here

ESO Imaging Survey: Infrared Deep Public Survey

73   0   0.0 ( 0 )
 Added by L. F. Olsen
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents new J and Ks data obtained from observations conducted at the ESO 3.5m New Technology Telescope using the SOFI camera. These data were taken as part of the ESO Imaging Survey Deep Public Survey (DPS) and significantly extend the earlier optical/infrared EIS-DEEP survey presented in a previous paper. The DPS-IR survey comprises two observing strategies: shallow Ks observations providing nearly full coverage of pointings with complementary multi-band optical data and deeper J and Ks observations of the central parts of these fields. The DPS-IR survey provides a coverage of roughly 2.1 square degrees in Ks with 0.63 square degrees to fainter magnitudes and also covered in J, over three independent regions of the sky. The goal of the present paper is to describe the observations, the data reduction procedures, and to present the final survey products. The astrometric solution with an estimated accuracy of <0.15 is based on the USNO catalog. The final stacked images presented here number 89 and 272, in J and Ks, respectively, the latter reflecting the larger surveyed area. The J and Ks images were taken with a median seeing of 0.77 and 0.8. The images reach a median 5sigma limiting magnitude of J_AB~23.06 in an aperture of 2, while the corresponding limiting magnitude in Ks_AB is ~21.41 and ~22.16 mag for the shallow and deep strategies. Overall, the observed limiting magnitudes are consistent with those originally proposed. The quality of the data has been assessed by comparing the measured magnitude of sources at the bright end directly with those reported by the 2MASS survey and at the faint end by comparing the counts of galaxies and stars with those of other surveys to comparable depth and to model predictions. The final science-grade catalogs and images are available at CDS.



rate research

Read More

This paper presents new five passbands (UBVRI) optical wide-field imaging data accumulated as part of the DEEP Public Survey (DPS) carried out as a public survey by the ESO Imaging Survey (EIS) project. Out of the 3 square degrees originally proposed, the survey covers 2.75 square degrees, in at least one band (normally R), and 1.00 square degrees in five passbands. The median seeing, as measured in the final stacked images, is 0.97, ranging from 0.75 to 2.0. The median limiting magnitudes (AB system, 2 aperture, 5 sigma detection limit) are U_(AB)=25.65, B_(AB)=25.54, V_(AB)=25.18, R_(AB) = 24.8 and I_(AB)=24.12 mag, consistent with those proposed in the original survey design. The paper describes the observations and data reduction using the EIS Data Reduction System and its associated EIS/MVM library. The quality of the individual images were inspected, bad images discarded and the remaining used to produce final image stacks in each passband, from which sources have been extracted. Finally, the scientific quality of these final images and associated catalogs was assessed qualitatively by visual inspection and quantitatively by comparison of statistical measures derived from these data with those of other authors as well as model predictions, and from direct comparison with the results obtained from the reduction of the same dataset using an independent (hands-on) software system. Finally to illustrate one application of this survey, the results of a preliminary effort to identify sub-mJy radio sources are reported. To the limiting magnitude reached in the R and I passbands the success rate ranges from 66 to 81% (depending on the fields). These data are publicly available at CDS.
The VISTA near-infrared YJKs survey of the Magellanic Clouds system (VMC) has entered its core phase: about 40% of the observations across the Large and Small Magellanic Clouds (LMC, SMC), the Magellanic Bridge and Stream have already been secured and the data are processed and analysed regularly. The initial analyses, concentrated in the first two completed tiles in the LMC (6_6 including 30 Doradus and 8_8 including the South Ecliptic Pole), show the superior quality of the data. The depth of the VMC survey allows the derivation of the star formation history (SFH) with unprecedented quality compared to previous wide-area surveys while reddening maps of high angular resolution are constructed using red clump stars. The multi-epoch Ks-band data reveal tight period-luminosity relations for variable stars and they permit the measurement of accurate proper motions of the stellar populations. The VMC survey continues to acquire data that will address many issues in the field of star and galaxy evolution.
VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESOs Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < lambda < 1.0 micron) spectroscopy of ~2100 galaxies within the redshift interval 1.0 < z < 7.0, over a total area of ~0.2 sq. degrees centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z>=3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < t_int < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 < z < 5.5, b) massive quiescent galaxies at 1.0 < z < 2.5, c) fainter star-forming galaxies at 3.0 < z < 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.
Aims. The clustering properties of a large sample of U-dropouts are investigated and compared to very precise results for B-dropouts from other studies to identify a possible evolution from z=4 to z=3. Methods. A population of ~8800 candidates for star-forming galaxies at z=3 is selected via the well-known Lyman-break technique from a large optical multicolour survey (the ESO Deep Public Survey). The selection efficiency, contamination rate, and redshift distribution of this population are investigated by means of extensive simulations. Photometric redshifts are estimated for every Lyman-break galaxy (LBG) candidate from its UBVRI photometry yielding an empirical redshift distribution. The measured angular correlation function is deprojected and the resulting spatial correlation lengths and slopes of the correlation function of different subsamples are compared to previous studies. Results. By fitting a simple power law to the correlation function we do not see an evolution in the correlation length and the slope from other studies at z=4 to our study at z=3. In particular, the dependence of the slope on UV-luminosity similar to that recently detected for a sample of B-dropouts is confirmed also for our U-dropouts. For the first time number statistics for U-dropouts are sufficient to clearly detect a departure from a pure power law on small scales down to ~2 reported by other groups for B-dropouts.
In this paper we present a new deep, wide-field near-infrared imaging survey. Our J- and K-band observations in four separate fields complement optical BVRI, ultraviolet and spectroscopic observations undertaken as part of the VIMOS-VLT deep survey (VVDS). In total, our survey spans ~400arcmis^2. Our catalogues are reliable in all fields to at least Kvega~20.75 and Jvega~21.50 (defined as the magnitude where object contamination is less than 10% and completeness greater than 90%). Taken together these four fields represents a unique combination of depth, wavelength coverage and area. We describe the complete data reduction process and outline a comprehensive series of tests carried out to characterise the reliability of the final catalogues. We compare the statistical properties of our catalogues with literature compilations. We find that our J- and K-selected galaxy counts are in good agreement with previously published works, as are our (J-K) versus K colour-magnitude diagrams. Stellar number counts extracted from our fields are consistent with a synthetic model of our galaxy. Using the location of the stellar locus in colour-magnitude space and the measured field-to-field variation in galaxy number counts we demonstrate that the absolute accuracy of our photometric calibration is at the 5% level or better. Finally, an investigation of the angular clustering of K- selected extended sources in our survey displays the expected scaling behaviour with limiting magnitude, with amplitudes in each magnitude bin in broad agreement with literature values.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا