Do you want to publish a course? Click here

Recent Star Formation in the Extreme Outer Disk of M83

51   0   0.0 ( 0 )
 Added by David Thilker
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultraviolet imaging with the Galaxy Evolution Explorer (GALEX) has revealed an extensive sample of UV-bright stellar complexes in the extreme outer disk of M83, extending to about four times the radius where the majority of HII regions are detected (R_HII = 5.1 or 6.6 kpc). These sources are typically associated with large-scale filamentary HI structures in the warped outer disk of M83, and are distributed beyond the galactocentric radii at which molecular ISM has yet been detected. We present measured properties of these stellar complexes, including FUV and NUV magnitudes and local gas surface density. Only a subset of the outer disk UV sources have corresponding HII regions detected in H-alpha imaging, consistent with a sample of mixed age in which some sources are a few Myr old and others are much more evolved (~ 10^8 yr).



rate research

Read More

Spitzer IRAC observations of two fields in the XUV-disk of M83 have been recently obtained,3R_{HII} away from the center of the galaxy (R_{HII)=6.6 kpc).GALEX UV images have shown the two fields to host in-situ recent star formation.The IRAC images are used in conjunction with GALEX data and new HI imaging from THINGS to constrain stellar masses and ages of the UV clumps in the fields,and to relate the local recent star formation to the reservoir of available gas. multi wavelength photometry in the UV and mid-IR bands of 136 UV clumps(spatial resolution >220pc) identified in the two target fields, together with model fitting of the stellar UV-MIR SED,suggest that the clumps cover a range of ages between a few Myr and >1Gyr with a median value around <100Myr,and have masses in the range 10^3-3*10^6M, with a peak ~10^4.7M.The range of observed ages,for which only a small fraction of the mass in stars appears to have formed in the past ~10Myr, agrees with the dearth of Ha emission observed in these outer fiel ds. At the location of our IRAC fields, the HI map shows localized enhancement and clumping of atomic gas. A comparison of the observed star formation with the gas reservoir shows that the UV clumps follow the Schmidt--Kennicutt scaling law of star formation,and that star formation is occurring in regions with gas dens ities at approximately (within a factor of a few) the critical density value de -rived according to the Toomre Q gravitational stability criterion. The signifi cant 8 micron excess in several of the clumps (16% of the total by number accou nting for ~67% of the 8 micron flux)) provides evidence for the existence of dust in these remote fields, in agreement with results for other galaxies. Furt hermore, we observe a relatively small excess of emission at 4.5 micron in the clumps...
145 - Gerhardt Meurer 2016
The HI in galaxies often extends past their conventionally defined optical extent. I report results from our team which has been probing low intensity star formation in outer disks using imaging in H-alpha and ultraviolet. Using a sample of hundreds of HI selected galaxies, we confirm that outer disk HII regions and extended UV disks are common. Hence outer disks are not dormant but are dimly forming stars. Although the ultraviolet light in galaxies is more centrally concentrated than the HI, the UV/HI ratio (the Star Formation Efficiency) is nearly constant, with a slight dependency on surface brightness. This result is well accounted for in a model where disks maintain a constant stability parameter Q. This model also accounts for how the ISM and star formation are distributed in the bright parts of galaxies, and how HI appears to trace the distribution of dark matter in galaxy outskirts.
We have derived the star formation history of the Milky Way disk over the last 2 Gyr from the age distribution diagram of a large sample of open clusters comprising more than 580 objects. By interpreting the age distribution diagram using numerical results from an extensive library of N-body calculations carried out during the last ten years, we reconstruct the recent star formation history of the Milky Way disk. Our analysis suggests that superimposed on a relatively small level of constant star formation activity mainly in small-N star clusters, the star formation rate has experienced at least 5 episodes of enhanced star formation lasting about 0.2 Gyr with production of larger clusters. This cyclic behavior seems to show a period of 0.4+/-0.1 Gyr.
The extreme outer Galaxy (EOG) has a very different environment from that in the solar neighborhood, with low metallicity (less than -0.5 dex), much lower gas density, and small or no perturbation from spiral arms. The EOG is an excellent laboratory for the study of the star formation processes that happened during the formation period of the Galaxy. In particular, the study of the EOG may shed light on the origin and role of the thick disk, whose metallicity range matches well with that of the EOG. We show an example of a molecular cloud in the EOG (Digels Cloud 2), which is located at R_g ~ 20 kpc beyond the Outer arm. Based on our NIR and 12CO data as well as HI, radio continuum, and IRAS data in the archives, we examined the detailed star formation processes in this unique environment, especially the supernova triggered star formation, which should have been the major star formation mode during the halo and thick disk formation.
406 - T. Tsujimoto 2010
Chemical features of the local stellar disk have firmly established that long-term, continuous star formation has been accompanied by a steady rate of accretion of low-metallicity gas from the halo. We now argue that the recent discovery of an enhanced deuterium (D) fraction in the Galaxy is consistent with this picture. We consider two processes: the destruction of D in the interior of stars (astration) and the supply of nearly primordial D associated with the gas infall. Conventional Galactic chemical evolution models predict a monotonic decrease in D/H with time with a present-day D/H abundance which is much lower than the local value recently revealed. This predicted feature is the result of high levels of deuterium astration involved in the formation of the local metal-enhanced disk. Here we propose a new channel to explain the observed enhancement in D/H. Our model, which invokes ongoing gaseous infall and a star formation rate that declines over the past several Gyr, predicts that the D astration is suppressed over the same time interval.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا