Do you want to publish a course? Click here

On the recent star formation history of the Milky Way disk

71   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have derived the star formation history of the Milky Way disk over the last 2 Gyr from the age distribution diagram of a large sample of open clusters comprising more than 580 objects. By interpreting the age distribution diagram using numerical results from an extensive library of N-body calculations carried out during the last ten years, we reconstruct the recent star formation history of the Milky Way disk. Our analysis suggests that superimposed on a relatively small level of constant star formation activity mainly in small-N star clusters, the star formation rate has experienced at least 5 episodes of enhanced star formation lasting about 0.2 Gyr with production of larger clusters. This cyclic behavior seems to show a period of 0.4+/-0.1 Gyr.



rate research

Read More

129 - David M. Nataf 2015
The stellar population of the Milky Way bulge is thoroughly studied, with a plethora of measurements from virtually the full suite of instruments available to astronomers. It is thus perhaps surprising that alongside well-established results lies some substantial uncertainty in its star-formation history. Cosmological models predict the bulge to host the Galaxys oldest stars for [Fe/H]$lesssim -1$, and this is demonstrated by RR Lyrae stars and globular cluster observations. There is consensus that bulge stars with [Fe/H]$lesssim0$ are older than $t approx10$ Gyr. However, at super-solar metallicity, there is a substantial unresolved discrepancy. Data from spectroscopic measurements of the main-sequence turnoff and subgiant branch, the abundances of asymptotic giant branch stars, the period distribution of Mira variables, the chemistry and central-star masses of planetary nebulae, all suggest a substantial intermediate-age population ($t approx 3$ Gyr). This is in conflict with predictions from cosmologically-motivated chemical evolution models and photometric studies of the main-sequence turnoff region, which both suggest virtually no stars younger than $t approx 8$ Gyr. A possible resolution to this conflict is enhanced helium-enrichment, as this would shift nearly all of the age estimates in the direction of decreasing discrepancy. Enhanced helium-enrichment is also arguably suggested by measurements of the red giant branch bump and the R-parameter.
Gaia DR2 provides unprecedented precision in measurements of the distance and kinematics of stars in the solar neighborhood. Through applying unsupervised machine learning on DR2s 5-dimensional dataset (3d position + 2d velocity), we identify a number of clusters, associations, and co-moving groups within 1 kpc and $|b|<30^circ$ (many of which have not been previously known). We estimate their ages with the precision of $sim$0.15 dex. Many of these groups appear to be filamentary or string-like, oriented in parallel to the Galactic plane, and some span hundreds of pc in length. Most of these string lack a central cluster, indicating that their filamentary structure is primordial, rather than the result of tidal stripping or dynamical processing. The youngest strings ($<$100 Myr) are orthogonal to the Local Arm. The older ones appear to be remnants of several other arm-like structures that cannot be presently traced by dust and gas. The velocity dispersion measured from the ensemble of groups and strings increase with age, suggesting a timescale for dynamical heating of $sim$300 Myr. This timescale is also consistent with the age at which the population of strings begins to decline, while the population in more compact groups continues to increase, suggesting that dynamical processes are disrupting the weakly bound string populations, leaving only individual clusters to be identified at the oldest ages. These data shed a new light on the local galactic structure and a large scale cloud collapse.
We develop a chemical evolution model in order to study the star formation history of the Milky Way. Our model assumes that the Milky Way is formed from a closed box-like system in the inner regions, while the outer parts of the disc experience some accretion. Unlike the usual procedure, we do not fix the star formation prescription (e.g. Kennicutt law) in order to reproduce the chemical abundance trends. Instead, we fit the abundance trends with age in order to recover the star formation history of the Galaxy. Our method enables one to recover with unprecedented accuracy the star formation history of the Milky Way in the first Gyrs, in both the inner (R<7-8kpc) and outer (R>9-10kpc) discs as sampled in the solar vicinity. We show that, in the inner disc, half of the stellar mass formed during the thick disc phase, in the first 4-5 Gyr. This phase was followed by a significant dip in the star formation activity (at 8-9 Gyr) and a period of roughly constant lower level star formation for the remaining 8 Gyr. The thick disc phase has produced as many metals in 4 Gyr as the thin disc in the remaining 8 Gyr. Our results suggest that a closed box model is able to fit all the available constraints in the inner disc. A closed box system is qualitatively equivalent to a regime where the accretion rate, at high redshift, maintains a high gas fraction in the inner disc. In such conditions, the SFR is mainly governed by the high turbulence of the ISM. By z~1 it is possible that most of the accretion takes place in the outer disc, while the star formation activity in the inner disc is mostly sustained by the gas not consumed during the thick disc phase, and the continuous ejecta from earlier generations of stars. The outer disc follows a star formation history very similar to that of the inner disc, although initiated at z~2, about 2 Gyr before the onset of the thin disc formation in the inner disc.
165 - B. Fuchs , H. Jahreiss , C. Flynn 2008
We use a new method to trace backwards the star formation history of the Milky Way disk, using a sample of M dwarfs in the solar neighbourhood which is representative for the entire solar circle. M stars are used because they show H_alpha emission until a particular age which is a well calibrated function of their absolute magnitudes. This allows us to reconstruct the rate at which disk stars have been born over about half the disks lifetime. Our star formation rate agrees well with those obtained by using other, independent, methods and seems to rule out a constant star formation rate. The principal result of this study is to show that a relation of the Schmidt-Kennicut type (which relates the star formation rate to the interstellar gas content of galaxy disks) has pertained in the Milky Way disk during the last 5 Gyr. The star formation rate we derive from the M dwarfs and the interstellar gas content of the disk can be inferred as a function of time from a model of the chemical enrichment of the disk, which is well constrained by the observations indicating that the metallicity of the Galactic disk has remained nearly constant over the timescales involved. We demonstrate that the star formation rate and gas surface densities over the last 5 Gyrs can be accurately described by a Schmidt-Kennicutt law with an index of Gamma = 1.45 (+0.22,-0.09). This is, within statistical uncertainties, the same value found for other galaxies.
The relations between star formation and properties of molecular clouds are studied based on a sample of star forming regions in the Galactic Plane. Sources were selected by having radio recombination lines to provide identification of associated molecular clouds and dense clumps. Radio continuum and mid-infrared emission were used to determine star formation rates, while 13CO and submillimeter dust continuum emission were used to obtain masses of molecular and dense gas, respectively. We test whether total molecular gas or dense gas provides the best predictor of star formation rate. We also test two specific theoretical models, one relying on the molecular mass divided by the free-fall time, the other using the free-fall time divided by the crossing time. Neither is supported by the data. The data are also compared to those from nearby star forming regions and extragalactic data. The star formation efficiency, defined as star formation rate divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all the molecular gas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا