Do you want to publish a course? Click here

Interpretation of abundance ratios

64   0   0.0 ( 0 )
 Added by Cristina Chiappini
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we discuss abundance ratios and their relation to stellar nucleosynthesis and other parameters of chemical evolution models, reviewing and clarifying the correct use of the observed abundance ratios in several astrophysical contests. In particular, we start from the well known fact that abundance ratios depend on stellar yields, initial mass function and stellar lifetimes and we show, by means of specific examples, that in some cases it is not correct to infer constraints on the contributions from different SN types (Ia, II), and particularly on different sets of yields, in the absence of a complete chemical evolution model taking into account stellar lifetimes. In spite of the fact that some of these results should be well known, we believe that it is useful to discuss the meaning of abundance ratios in the light of severel recent claims based upon an incorrect interpretation of observed abundance ratios. In particular, the procedure, often used in the recent literature, of deriving directly conclusions about stellar nucleosynthesis, just by relating abundance ratios to yield ratios, implicitly assumes the instantaneous recycling approximation (I.R.A.). This approximation is clearly not correct when one analyzes the contributions of SNIa relative to SNII as functions of cosmic time. In this paper we show that the uncertainty which arises from adopting this oversimplified procedure in a variety of astrophysical objects, such as elliptical galaxies, the intracluster medium and high redshift objects, does not allow us to draw any firm conclusion, and that the differences between abundance ratios predicted by models with I.R.A. and models with detailed stellar lifetimes is of the same order as the differences between different sets of yields. (Abridged)



rate research

Read More

We determine abundance ratios of 37 dwarf ellipticals (dEs) in the nearby Virgo cluster. This sample is representative of the early-type population of galaxies in the absolute magnitude range -19.0 < Mr < -16.0. We analyze their absorption line-strength indices by means of index-index diagrams and scaling relations and use the stellar population models to interpret them. We present ages, metallicities and abundance ratios obtained from these dEs within an aperture size of Re/8. We calculate [Na/Fe] from NaD, [Ca/Fe] from Ca4227 and [Mg/Fe] from Mgb. We find that [Na/Fe] is under-abundant with respect to solar while [Mg/Fe] is around solar. This is exactly opposite to what is found for giant ellipticals, but follows the trend with metallicity found previously for the Fornax dwarf NGC 1396. We discuss possible formation scenarios that can result in such elemental abundance patterns and we speculate that dEs have disk-like SFH favouring them to originate from late-type dwarfs or small spirals. Na-yields appear to be very metal-dependent, in agreement with studies of giant ellipticals, probably due to the large dependence on the neutron-excess in stars. We conclude that dEs have undergone a considerable amount of chemical evolution, they are therefore not uniformly old, but have extended SFH, similar to many of the Local Group galaxies.
We map the trends of elemental abundance ratios across the Galactic disk, spanning R = 3-15 kpc and midplane distance |Z|= 0-2 kpc, for 15 elements in a sample of 20,485 stars measured by the SDSS/APOGEE survey (O, Na, Mg, Al, Si, P, S, K, Ca, V, Cr, Mn, Fe, Co, Ni). Adopting Mg rather than Fe as our reference element, and separating stars into two populations based on [Fe/Mg], we find that the median trends of [X/Mg] vs. [Mg/H] in each population are nearly independent of location in the Galaxy. The full multi-element cartography can be summarized by combining these nearly universal median sequences with our measured metallicity distribution functions and the relative proportions of the low-[Fe/Mg] (high-alpha) and high-[Fe/Mg] (low-alpha) populations, which depend strongly on R and |Z|. We interpret the median sequences with a semi-empirical 2-process model that describes both the ratio of core collapse and Type Ia supernova contributions to each element and the metallicity dependence of the supernova yields. These observationally inferred trends can provide strong tests of supernova nucleosynthesis calculations. Our results lead to a relatively simple picture of abundance ratio variations in the Milky Way, in which the trends at any location can be described as the sum of two components with relative contributions that change systematically and smoothly across the Galaxy. Deviations from this picture and future extensions to other elements can provide further insights into the physics of stellar nucleosynthesis and unusual events in the Galaxys history.
We present the abundance ratios [X/H] of a large set of chemical species with condensation temperatures from 75 to 1600 K in an almost complete set of 105 planet-host stars and in a volume-limited comparison sample of 88 stars without any known planets. The large range of different Tc covered by all the analysed elements allows us to investigate possible anomalous trends of [X/H] vs. Tc in targets with planets with respect to comparison sample stars. This can give important hints for the detection of pollution events and for the understanding of the relative contribution of the differential accretion to the average metallicity excess found in planet host stars.
93 - Y. C. Liang 2006
Using a large sample of 38,478 star-forming galaxies selected from the Second Data Release of the Sloan Digital Sky Survey database (SDSS-DR2), we derive analytical calibrations for oxygen abundances from several metallicity-sensitive emission-line ratios: [N II]/H_alpha, [O III]/[N II], [N II]/[O II], [N II]/[S II], [S II]/H_alpha, and [O III]/H_beta. This consistent set of strong-line oxygen abundance calibrations will be useful for future abundance studies. Among these calibrations, [N II]/[O II] is the best for metal-rich galaxies due to its independence on ionization parameter and low scatter. Dust extinction must be considered properly at first. These calibrations are more suitable for metal-rich galaxies (8.4<12+log(O/H)<9.3), and for the nuclear regions of galaxies. The observed relations are consistent with those expected from the photoionization models of Kewley & Dopita (2002). However, most of the observational data spread in a range of ionization parameter q from 1*10^7 to 8*10^7 cm s^{-1}, corresponding to logU= -3.5 to -2.5, narrower than that suggested by the models. We also estimate the (N/O) abundance ratios of this large sample of galaxies, and these are consistent with the combination of a primary and a dominant secondary components of nitrogen.
In this work we present chemical abundances of heavy elements (Z$>$28) for a homogeneous sample of 1059 stars from HARPS planet search program. We also derive ages using parallaxes from Hipparcos and Gaia DR1 to compare the results. We study the [X/Fe] ratios for different populations and compare them with models of Galactic chemical evolution. We find that thick disk stars are chemically disjunt for Zn and Eu. Moreover, the high-alpha metal-rich population presents an interesting behaviour, with clear overabundances of Cu and Zn and lower abundances of Y and Ba with respect to thin disk stars. Several abundance ratios present a significant correlation with age for chemically separated thin disk stars (regardless of their metallicity) but thick disk stars do not present that behaviour. Moreover, at supersolar metallicities the trends with age tend to be weaker for several elements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا