No Arabic abstract
We investigate cosmic-ray antiprotons emitted from the galactic primordial black holes in the Randall-Sundrum type-2 braneworld. The recent results of the BESS antiproton observation implies the existence of exotic primary sub-GeV antiprotons, one of whose most probable origin is PBHs in Our Galaxy. We show that the magnitude of antiproton flux from PBHs in the RS braneworld is proportional to negative power of the AdS radius, and immediately find that a large extra-dimension can relax upper-limits on the abundance of the Galactic PBHs. If actually there are more PBHs than the known upper-limit obtained in the pure 4D case, they set a lower bound on the size of the extra dimension above at least 10^{20} times 4D Planck-length to avoid inconsistency. On completion of the numerical studies, we show that these constraints on the AdS radius is comparable to those obtained from the diffuse photon background by some of the authors in the previous paper. Moreover, in the low accretion-rate case, only antiprotons can constrain the braneworld. We show that we will detect signatures of the braneworld as a difference between the flux of the antiprotons predicted in 4D and 5D by future observations in sub-GeV region with a few percent precision.
The fraction of the Universe going into primordial black holes (PBHs) with initial mass M_* approx 5 times 10^{14} g, such that they are evaporating at the present epoch, is strongly constrained by observations of both the extragalactic and Galactic gamma-ray backgrounds. However, while the dominant contribution to the extragalactic background comes from the time-integrated emission of PBHs with initial mass M_*, the Galactic background is dominated by the instantaneous emission of those with initial mass slightly larger than M_* and current mass below M_*. Also, the instantaneous emission of PBHs smaller than 0.4 M_* mostly comprises secondary particles produced by the decay of directly emitted quark and gluon jets. These points were missed in the earlier analysis by Lehoucq et al. using EGRET data. For a monochromatic PBH mass function, with initial mass (1+mu) M_* and mu << 1, the current mass is (3mu)^{1/3} M_* and the Galactic background constrains the fraction of the Universe going into PBHs as a function of mu. However, the initial mass function cannot be precisely monochromatic and even a tiny spread of mass around M_* would generate a current low-mass tail of PBHs below M_*. This tail would be the main contributor to the Galactic background, so we consider its form and the associated constraints for a variety of scenarios with both extended and nearly-monochromatic initial mass functions. In particular, we consider a scenario in which the PBHs form from critical collapse and have a mass function which peaks well above M_*. In this case, the largest PBHs could provide the dark matter without the M_* ones exceeding the gamma-ray background limits.
The mass spectrum of the primordial black holes formed by density perturbation in the radiation-dominated era of the Randall-Sundrum type-2 cosmology is given. The spectrum coincides with standard four-dimensional one on large scales but the deviation is apparent on smaller scales. The mass spectrum is initially softer than standard four-dimensional one, while after accretion during the earliest era it becomes harder than that. We also show expected extragalactic diffuse photon background spectra varying the initial perturbation power-law power spectrum and give constraints on the blue spectra and/or the reheating temperature. The most recent observations on the small scale density perturbation from WMAP, SDSS and Lyman-alpha Forest are used. What we get are interpreted as constraints on the smaller scale inflation on the brane connected to the larger one at the scale of Lyman-alpha Forest. If we set the bulk curvature radius to be 0.1 mm and assume the reheating temperature is higher than 10^6 GeV, the scalar spectral index from the smaller scale inflation is constrained to be n lesssim 1.3. Typically, the constraints are tighter than standard four-dimensional one, which is also revised by us using the most recent observations.
Primordial black holes (PBHs) are of fundamental interest in cosmology and astrophysics, and have received much attention as a dark matter candidate and as a potential source of gravitational waves. One possible PBH formation mechanism is the gravitational collapse of cosmic strings. Thus far, the entirety of the literature on PBH production from cosmic strings has focused on the collapse of (quasi)circular cosmic string loops, which make up only a tiny fraction of the cosmic loop population. We demonstrate here a novel PBH formation mechanism: the collapse of a small segment of cosmic string in the neighbourhood of a cusp. Using the hoop conjecture, we show that collapse is inevitable whenever a cusp appears on a macroscopically-large loop, forming a PBH whose rest mass is smaller than the mass of the loop by a factor of the dimensionless string tension squared, $(Gmu)^2$. Since cusps are generic features of cosmic string loops, and do not rely on finely-tuned loop configurations like circular collapse, this implies that cosmic strings produce PBHs in far greater numbers than has previously been recognised. The resulting PBHs are highly spinning and boosted to ultrarelativistic velocities; they populate a unique region of the BH mass-spin parameter space, and are therefore a smoking gun observational signature of cosmic strings. We derive new constraints on $Gmu$ from the evaporation of cusp-collapse PBHs, and update existing constraints on $Gmu$ from gravitational-wave searches.
An observable stochastic background of gravitational waves is generated whenever primordial black holes are created in the early universe thanks to a small-scale enhancement of the curvature perturbation. We calculate the anisotropies and non-Gaussianity of such stochastic gravitational waves background which receive two contributions, the first at formation time and the second due to propagation effects. The former contribution can be generated if the distribution of the curvature perturbation is characterized by a local and scale-invariant shape of non-Gaussianity. Under such an assumption, we conclude that a sizeable magnitude of anisotropy and non-Gaussianity in the gravitational waves would suggest that primordial black holes may not comply the totality of the dark matter.
A universal mechanism may be responsible for several unresolved cosmic conundra. The sudden drop in the pressure of relativistic matter at $W^{pm}/Z^{0}$ decoupling, the quark--hadron transition and $e^{+}e^{-}$ annihilation enhances the probability of primordial black hole (PBH) formation in the early Universe. Assuming the amplitude of the primordial curvature fluctuations is approximately scale-invariant, this implies a multi-modal PBH mass spectrum with peaks at $10^{-6}$, 1, 30, and $10^{6},M_{odot}$. This suggests a unified PBH scenario which naturally explains the dark matter and recent microlensing observations, the LIGO/Virgo black hole mergers, the correlations in the cosmic infrared and X-ray backgrounds, and the origin of the supermassive black holes in galactic nuclei at high redshift. A distinctive prediction of our model is that LIGO/Virgo should observe black hole mergers in the mass gaps between 2 and $5,M_{odot}$ (where no stellar remnants are expected) and above $65,M_{odot}$ (where pair-instability supernovae occur) and low-mass-ratios in between. Therefore the recent detection of events GW190425, GW190814 and GW190521 with these features is striking confirmation of our prediction and may indicate a primordial origin for the black holes. In this case, the exponential sensitivity of the PBH abundance to the equation of state would offer a unique probe of the QCD phase transition. The detection of PBHs would also offer a novel way to probe the existence of new particles or phase transitions with energy between $1,{rm MeV}$ and $10^{10},$GeV.