No Arabic abstract
A universal mechanism may be responsible for several unresolved cosmic conundra. The sudden drop in the pressure of relativistic matter at $W^{pm}/Z^{0}$ decoupling, the quark--hadron transition and $e^{+}e^{-}$ annihilation enhances the probability of primordial black hole (PBH) formation in the early Universe. Assuming the amplitude of the primordial curvature fluctuations is approximately scale-invariant, this implies a multi-modal PBH mass spectrum with peaks at $10^{-6}$, 1, 30, and $10^{6},M_{odot}$. This suggests a unified PBH scenario which naturally explains the dark matter and recent microlensing observations, the LIGO/Virgo black hole mergers, the correlations in the cosmic infrared and X-ray backgrounds, and the origin of the supermassive black holes in galactic nuclei at high redshift. A distinctive prediction of our model is that LIGO/Virgo should observe black hole mergers in the mass gaps between 2 and $5,M_{odot}$ (where no stellar remnants are expected) and above $65,M_{odot}$ (where pair-instability supernovae occur) and low-mass-ratios in between. Therefore the recent detection of events GW190425, GW190814 and GW190521 with these features is striking confirmation of our prediction and may indicate a primordial origin for the black holes. In this case, the exponential sensitivity of the PBH abundance to the equation of state would offer a unique probe of the QCD phase transition. The detection of PBHs would also offer a novel way to probe the existence of new particles or phase transitions with energy between $1,{rm MeV}$ and $10^{10},$GeV.
We investigate Hawking evaporation of a population of primordial black holes (PBHs) prior to Big Bang Nucleosynthesis (BBN) as a mechanism to achieve asymmetric reheating of two sectors coupled solely by gravity. While the visible sector is reheated by the inflaton or a modulus, the dark sector is reheated by PBHs. Compared to inflationary or modular reheating of both sectors, there are two advantages: $(i)$ inflaton or moduli mediated operators that can subsequently thermalize the dark sector with the visible sector are not relevant to the asymmetric reheating process; $(ii)$ the mass and abundance of the PBHs provide parametric control of the thermal history of the dark sector, and in particular the ratio of the temperatures of the two sectors. Asymmetric reheating with PBHs turns out to have a particularly rich dark sector phenomenology, which we explore using a single self-interacting real scalar field in the dark sector as a template. Four thermal histories, involving non-relativistic and relativistic dark matter (DM) at chemical equilibrium, followed by the presence or absence of cannibalism, are explored. These histories are then constrained by the observed relic abundance in the current Universe and the Bullet Cluster. The case where PBHs dominate the energy density of the Universe, and reheat both the visible as well as the dark sectors, is also treated in detail.
Primordial black holes (PBHs) are of fundamental interest in cosmology and astrophysics, and have received much attention as a dark matter candidate and as a potential source of gravitational waves. One possible PBH formation mechanism is the gravitational collapse of cosmic strings. Thus far, the entirety of the literature on PBH production from cosmic strings has focused on the collapse of (quasi)circular cosmic string loops, which make up only a tiny fraction of the cosmic loop population. We demonstrate here a novel PBH formation mechanism: the collapse of a small segment of cosmic string in the neighbourhood of a cusp. Using the hoop conjecture, we show that collapse is inevitable whenever a cusp appears on a macroscopically-large loop, forming a PBH whose rest mass is smaller than the mass of the loop by a factor of the dimensionless string tension squared, $(Gmu)^2$. Since cusps are generic features of cosmic string loops, and do not rely on finely-tuned loop configurations like circular collapse, this implies that cosmic strings produce PBHs in far greater numbers than has previously been recognised. The resulting PBHs are highly spinning and boosted to ultrarelativistic velocities; they populate a unique region of the BH mass-spin parameter space, and are therefore a smoking gun observational signature of cosmic strings. We derive new constraints on $Gmu$ from the evaporation of cusp-collapse PBHs, and update existing constraints on $Gmu$ from gravitational-wave searches.
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation, so their abundance at formation is constrained by the effects of evaporated particles on big bang nucleosynthesis, the cosmic microwave background (CMB), the Galactic and extragalactic $gamma$-ray and cosmic ray backgrounds and the possible generation of stable Planck mass relics. PBHs larger than $sim 10^{15}$ g are subject to a variety of constraints associated with gravitational lensing, dynamical effects, influence on large-scale structure, accretion and gravitational waves. We discuss the constraints on both the initial collapse fraction and the current fraction of the CDM in PBHs at each mass scale but stress that many of the constraints are associated with observational or theoretical uncertainties. We also consider indirect constraints associated with the amplitude of the primordial density fluctuations, such as second-order tensor perturbations and $mu$-distortions arising from the effect of acoustic reheating on the CMB, if PBHs are created from the high-$sigma$ peaks of nearly Gaussian fluctuations. Finally we discuss how the constraints are modified if the PBHs have an extended mass function, this being relevant if PBHs provide some combination of the dark matter, the LIGO/Virgo coalescences and the seeds for cosmic structure. Even if PBHs make a small contribution to the dark matter, they could play an important cosmological role and provide a unique probe of the early Universe.
We show that the number of primordial black holes (PBHs) which is originated from primordial density perturbations with moderately-tilted power spectrum fluctuates following the log-normal distribution, while it follows the Poisson distribution if the spectrum is steeply blue. The log-normal, as well as the Poisson, fluctuation of the PBH number behaves as an isocurvature mode and affects the matter power spectrum and the halo mass function in a different way from those for the Poisson case. The future 21cm observation can potentially put a stronger constraint on the PBH fraction than the current one in a wide mass range, $10^{-5}M_odot$--$10M_odot$.
Primordial black holes as dark matter may be generated in single-field models of inflation thanks to the enhancement at small scales of the comoving curvature perturbation. This mechanism requires leaving the slow-roll phase to enter a non-attractor phase during which the inflaton travels across a plateau and its velocity drops down exponentially. We argue that quantum diffusion has a significant impact on the primordial black hole mass fraction making the classical standard prediction not trustable.