Do you want to publish a course? Click here

Bar-Driven Evolution and 2D Spectroscopy of Bulges

44   0   0.0 ( 0 )
 Added by Martin Bureau
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

A multi-faceted approach is described to constrain the importance of bar-driven evolution in disk galaxies, particularly bulge formation. N-body simulations are used to construct stellar kinematic bar diagnostics for edge-on systems and to quantify the expected vertical structure of bars, and they are compared to observations of 30 edge-on spirals, most with a boxy bulge. Long-slit spectra of the galaxies show characteristic double-hump rotation curves, dispersion profiles with secondary peaks and/or flat maxima, and correlated h3 and V profiles, indicating that most of them harbor edge-on bars. The presence of cold, quasi-axisymmetric central stellar disks is also suggested, presumably formed through bar-driven gaseous inflow and star formation. K-band imaging of the same galaxies spectacularly highlights radial variations of the bars scaleheights, as expected from vertical disk instabilities. The light profiles also vary radially in shape but never approach a classic de Vaucouleurs law. Filtering of the images further isolates the specific orbit families at the origin of the boxy structure, which can be directly related to periodic orbit calculations in 3D barred potentials. Bars are thus shown to contribute substantially to the formation of both large-scale triaxial bulges and embedded central disks. Relevant results from the SAURON survey of the stellar/ionized-gas kinematics and stellar populations of spheroids are also described. Examples are used to illustrate the potential of coupling stellar kinematics and linestrengths (age and metallicity), here specifically to unravel the dynamical evolution and related chemical enrichment history of bars and bulges. [Abridged]



rate research

Read More

After presenting three ways of defining a bulge component in disc galaxies, we introduce the various types of bulges, namely the classical bulges, the boxy/peanut bulges and the disc-like bulges. We then discuss three specific topics linked to bulge formation and evolution, namely the coupled time evolution of the bar, buckling and peanut strengths; the effect of velocity anisotropy on peanut formation; and bulge formation via bar destruction.
192 - F. Combes 2009
Bulges are of different types, morphologies and kinematics, from pseudo-bulges, close to disk properties (Sersic index, rotation fraction, flatenning), to classical de Vaucouleurs bulges, close to elliptical galaxies. Secular evolution and bar development can give rise to pseudo-bulges. To ensure prolonged secular evolution, gas flows are required along the galaxy life-time. There is growing evidence for cold gas accretion around spiral galaxies. This can explain the bar cycle of destruction and reformation, together with pseudo-bulge formation. However, bulges can also be formed through major mergers, minor mergers, and massive clumps early in the galaxy evolution. Bulge formation is so efficient that it is difficult to explain the presence of bulgeless galaxies today.
We have obtained Integral Field Spectroscopy for 23 spiral bulges using INTEGRAL on the William Herschel Telescope and SPIRAL on the Anglo-Australian Telescope. This is the first 2D survey directed solely at the bulges of spiral galaxies. Eleven galaxies of the sample do not have previous measurements of the stellar velocity dispersion (sigma*). These data are designed to complement our Space Telescope Imaging Spectrograph program for estimating black hole masses in the range 10^6-10^8M_sun using gas kinematics from nucleated disks. These observations will serve to derive the stellar dynamical bulge properties using the traditional Mgb and CaII triplets. We use both Cross Correlation and Maximum Penalized Likelihood to determine projected sigma* in these systems and present radial velocity fields, major axis rotation curves, curves of growth and sigma* fields. Using the Cross Correlation to extract the low order 2D stellar dynamics we generally see coherent radial rotation and irregular velocity dispersion fields suggesting that sigma* is a non-trivial parameter to estimate.
183 - A.Pipino 2007
We present a new class of hydrodynamical models for the formation of bulges (either massive elliptical galaxies or classical bulges in spirals) in which we implement detailed prescriptions for the chemical evolution of H, He, O and Fe. Our results hint toward an outside-in formation in the context of the supernovae-driven wind scenario. The build-up of the chemical properties of the stellar populations inhabiting the galactic core is very fast. Therefore we predict a non significant evolution of both the mass-metallicity and the mass-[alpha/Fe] relations after the first 0.5 - 1 Gyr. In this framework we explain how the observed slopes, either positive or negative, in the radial gradient of the mean stellar [alpha/Fe], and their apparent lack of any correlation with all the other observables, can arise as a consequence of the interplay between star formation and metal-enhanced internal gas flows.
94 - Kartik Sheth 2005
We present an analysis of the molecular gas distributions in the 29 barred and 15 unbarred spirals in BIMA SONG. For CO-bright galaxies, we confirm the conclusion by Sakamoto et al. (1999b) that barred spirals have higher molecular gas concentrations in the central kiloparsec. The SONG sample also includes 27 galaxies below the CO brightness limit used by Sakamoto et al. Even in these CO-faint galaxies we show that high central gas concentrations are more common in barred galaxies, consistent with radial inflow driven by the bar. However, there is a significant population of early-type (Sa--Sbc) barred spirals (6 of 19) that have little or no molecular gas detected in the nuclear region and out to the bar co-rotation radius. In these galaxies, the bar has already driven most of the gas within the bar to the nuclear region, where it has been consumed by star formation. The median nuclear gas mass is over four times higher in early type bars; since the gas consumption rate is an order of magnitude higher in early type bars, early types must have significantly higher bar-driven inflows. The lower inflow rates in late type bars can be attributed to differences in bar structure between early and late types. Despite bar-driven inflows, the data indicate that it is highly unlikely for a late type galaxy to evolve into an early type via bar-induced gas inflow. Nonetheless, secular evolutionary processes are undoubtedly present, and pseudo-bulges are inevitable; evidence for pseudo-bulges is likely to be clearest in early-type galaxies because of their high gas inflow rates and higher star formation activity (abridged).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا