The 25 years following the serendipitous discovery of megamasers have seen tremendous progress in the study of luminous extragalactic H$_2$O emission. Single-dish monitoring and high resolution interferometry have been used to identify sites of massive star formation, to study the interaction of nuclear jets with dense molecular gas and to investigate the circumnuclear environment of active galactic nuclei (AGN). Accretion disks with radii of 0.1--3 pc were mapped and masses of nuclear engines of order 10$^{6}$--10$^{8}$ M$_{odot}$ were determined. So far, $sim$50 extragalactic H$_2$O maser sources have been detected, but few have been studied in detail.
Using the HPC ressources of the state of Baden-Wurttemberg, we modelled for the first time the luminous burst from a young massive star by accretion of material from its close environment. We found that the surroundings of young massive stars are shaped as a clumpy disk whose fragments provoke outbursts once they fall onto the protostar and concluded that similar strong luminous events observed in high-mass star forming regions may be a signature of the presence of such disks.
We present results from our numerical simulations of collapsing massive molecular cloud cores. These numerical calculations show that massive stars assemble quickly with mass accretion rates exceeding 10^-3 Msol/yr and confirm that the mass accretion during the collapsing phase is much more efficient than predicted by selfsimilar collapse solutions, dM/dt ~ c^3/G. We find that during protostellar assembly out of a non-turbulent core, the mass accretion reaches 20 - 100 c^3/G. Furthermore, we explore the self-consistent structure of bipolar outflows that are produced in our three dimensional magnetized collapse simulations. These outflows produce cavities out of which radiation pressure can be released, thereby reducing the limitations on the final mass of massive stars formed by gravitational collapse. Additional enhancement of the mass accretion rate comes from accretion along filaments that are built up by supersonic turbulent motions. Our numerical calculations of collapsing turbulent cores result in mass accretion rates as high as 10^-2 Msol/yr.
Recent advances in our understanding of massive star formation have made clear the important role of protostellar disks in mediating accretion. Here we describe a simple, semi-analytic model for young, deeply embedded, massive accretion disks. Our approach enables us to sample a wide parameter space of stellar mass and environmental variables, providing a means to make predictions for a variety of sources that next generation telescopes like ALMA and the EVLA will observe. Moreover we include, at least approximately, multiple mechanisms for angular momentum transport, a comprehensive model for disk heating and cooling, and a realistic estimate for the angular momentum in the gas reservoir. We make predictions for the typical sizes, masses, and temperatures of the disks, and describe the role of gravitational instabilities in determining the binarity fraction and upper mass cut-off.
Accretion disks around active galactic nuclei are potentially unstable to star formation at large radii. We note that when the compact objects formed from some of these stars spiral into the central supermassive black hole, there is no radiative feedback and therefore the accretion rate is not limited by radiation forces. Using a set of accretion disk models, we calculate the accretion rate onto the central supermassive black hole in both gas and compact objects. We find that the timescale for a supermassive black hole to double in mass can decrease by factors ranging from $sim0.7$ to as low as $sim0.1$ in extreme cases, compared to gas accretion alone. Our results suggest that the formation of extremely massive black holes at high redshift may occur without prolonged super-Eddington gas accretion or very massive seed black holes. We comment on potential observational signatures as well as implications for other observations of active galactic nuclei.
Early results from the Herschel Space Observatory revealed the water cation H2O+ to be an abundant ingredient of the interstellar medium. Here we present new observations of the H2O and H2O+ lines at 1113.3 and 1115.2 GHz using the Herschel Space Observatory toward a sample of high-mass star-forming regions to observationally study the relation between H2O and H2O+ . Nine out of ten sources show absorption from H2O+ in a range of environments: the molecular clumps surrounding the forming and newly formed massive stars, bright high-velocity outflows associated with the massive protostars, and unrelated low-density clouds along the line of sight. Column densities per velocity component of H2 O+ are found in the range of 10^12 to a few 10^13 cm-2 . The highest N(H2O+) column densities are found in the outflows of the sources. The ratios of H2O+/H2O are determined in a range from 0.01 to a few and are found to differ strongly between the observed environments with much lower ratios in the massive (proto)cluster envelopes (0.01-0.1) than in outflows and diffuse clouds. Remarkably, even for source components detected in H2O in emission, H2O+ is still seen in absorption.