Do you want to publish a course? Click here

Filaments, Collapse and Outflows in Massive Star Formation

107   0   0.0 ( 0 )
 Added by Robi Banerjee
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from our numerical simulations of collapsing massive molecular cloud cores. These numerical calculations show that massive stars assemble quickly with mass accretion rates exceeding 10^-3 Msol/yr and confirm that the mass accretion during the collapsing phase is much more efficient than predicted by selfsimilar collapse solutions, dM/dt ~ c^3/G. We find that during protostellar assembly out of a non-turbulent core, the mass accretion reaches 20 - 100 c^3/G. Furthermore, we explore the self-consistent structure of bipolar outflows that are produced in our three dimensional magnetized collapse simulations. These outflows produce cavities out of which radiation pressure can be released, thereby reducing the limitations on the final mass of massive stars formed by gravitational collapse. Additional enhancement of the mass accretion rate comes from accretion along filaments that are built up by supersonic turbulent motions. Our numerical calculations of collapsing turbulent cores result in mass accretion rates as high as 10^-2 Msol/yr.



rate research

Read More

172 - Igor I. Zinchenko 2019
We investigate at a high angular resolution the spatial and kinematic structure of the S255IR high mass star-forming region, which demonstrated recently the first disk-mediated accretion burst in the massive young stellar object. The observations were performed with ALMA in Band 7 at an angular resolution $ sim 0.1^{primeprime}$, which corresponds to $ sim 180 $ AU. The 0.9 mm continuum, C$^{34}$S(7-6) and CCH $N=4-3$ data show a presence of very narrow ($ sim 1000 $ AU), very dense ($nsim 10^7$ cm$^{-3}$) and warm filamentary structures in this area. At least some of them represent apparently dense walls around the high velocity molecular outflow with a wide opening angle from the S255IR-SMA1 core, which is associated with the NIRS3 YSO. This wide-angle outflow surrounds a narrow jet. At the ends of the molecular outflow there are shocks, traced in the SiO(8-7) emission. The SiO abundance there is enhanced by at least 3 orders of magnitude. The CO(3-2) and SiO(8-7) data show a collimated and extended high velocity outflow from another dense core in this area, SMA2. The outflow is bent and consists of a chain of knots, which may indicate periodic ejections possibly arising from a binary system consisting of low or intermediate mass protostars. The C$^{34}$S emission shows evidence of rotation of the parent core. Finally, we detected two new low mass compact cores in this area (designated as SMM1 and SMM2), which may represent prestellar objects.
Similar to their low-mass counterparts, massive stars likely form via the collapse of pre-stellar molecular cores. Recent observations suggest that most massive cores are subvirial (i.e., not supported by turbulence) and therefore are likely unstable to gravitational collapse. Here we perform radiation hydrodynamic simulations to follow the collapse of turbulent massive pre-stellar cores with subvirial and virialized initial conditions to explore how their dynamic state affects the formation of massive stars and core fragmentation into companion stars. We find that subvirial cores undergo rapid monolithic collapse resulting in higher accretion rates at early times as compared to the collapse of virialized cores that have the same physical properties. In contrast, we find that virialized cores undergo a slower, gradual collapse and significant turbulent fragmentation at early times resulting in numerous companion stars. In the absence of strong magnetic fields and protostellar outflows we find that the faster growth rate of massive stars that are born out of subvirial cores leads to an increase in the radiative heating of the core thereby further suppressing fragmentation at early times when turbulent fragmentation occurs for virialized cores. Regardless of initial condition, we find that the massive accretion disks that form around massive stars dominant the accretion flow onto the star at late times and eventually become gravitationally unstable and fragment to form companion stars at late times.
Stellar feedback in the form of radiation pressure and magnetically-driven collimated outflows may limit the maximum mass that a star can achieve and affect the star-formation efficiency of massive pre-stellar cores. Here we present a series of 3D adaptive mesh refinement radiation-magnetohydrodynamic simulations of the collapse of initially turbulent, massive pre-stellar cores. Our simulations include radiative feedback from both the direct stellar and dust-reprocessed radiation fields, and collimated outflow feedback from the accreting stars. We find that protostellar outflows punches holes in the dusty circumstellar gas along the stars polar directions, thereby increasing the size of optically thin regions through which radiation can escape. Precession of the outflows as the stars spin axis changes due to the turbulent accretion flow further broadens the outflow, and causes more material to be entrained. Additionally, the presence of magnetic fields in the entrained material leads to broader entrained outflows that escape the core. We compare the injected and entrained outflow properties and find that the entrained outflow mass is a factor of $sim$3 larger than the injected mass and the momentum and energy contained in the entrained material are $sim$25% and $sim$5% of the injected momentum and energy, respectively. As a result, we find that, when one includes both outflows and radiation pressure, the former are a much more effective and important feedback mechanism, even for massive stars with significant radiative outputs.
To study the early phases of massive star formation, we present ALMA observations of SiO(5-4) emission and VLA observations of 6 cm continuum emission towards 32 Infrared Dark Cloud (IRDC) clumps, spatially resolved down to $lesssim 0.05$ pc. Out of the 32 clumps, we detect SiO emission in 20 clumps, and in 11 of them the SiO emission is relatively strong and likely tracing protostellar outflows. Some SiO outflows are collimated, while others are less ordered. For the six strongest SiO outflows, we estimate basic outflow properties. In our entire sample, where there is SiO emission, we find 1.3 mm continuum and infrared emission nearby, but not vice versa. We build the spectral energy distributions (SEDs) of cores with 1.3 mm continuum emission and fit them with radiative transfer (RT) models. The low luminosities and stellar masses returned by SED fitting suggest these are early stage protostars. We see a slight trend of increasing SiO line luminosity with bolometric luminosity, which suggests more powerful shocks in the vicinity of more massive YSOs. We do not see a clear relation between the SiO luminosity and the evolutionary stage indicated by $L/M$. We conclude that as a protostar approaches a bolometric luminosity of $sim 10^2 : L_{odot}$, the shocks in the outflow are generally strong enough to form SiO emission. The VLA 6 cm observations toward the 15 clumps with the strongest SiO emission detect emission in four clumps, which is likely shock ionized jets associated with the more massive ones of these protostellar cores.
105 - C.Henkel , J.A.Braatz , A.Tarchi 2004
The 25 years following the serendipitous discovery of megamasers have seen tremendous progress in the study of luminous extragalactic H$_2$O emission. Single-dish monitoring and high resolution interferometry have been used to identify sites of massive star formation, to study the interaction of nuclear jets with dense molecular gas and to investigate the circumnuclear environment of active galactic nuclei (AGN). Accretion disks with radii of 0.1--3 pc were mapped and masses of nuclear engines of order 10$^{6}$--10$^{8}$ M$_{odot}$ were determined. So far, $sim$50 extragalactic H$_2$O maser sources have been detected, but few have been studied in detail.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا