Do you want to publish a course? Click here

Night sky brightness at sites from DMSP-OLS satellite measurements

66   0   0.0 ( 0 )
 Added by Pierantonio Cinzano
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply the sky brightness modelling technique introduced and developed by Roy Garstang to high-resolution DMSP-OLS satellite measurements of upward artificial light flux and to GTOPO30 digital elevation data in order to predict the brightness distribution of the night sky at a given site in the primary astronomical photometric bands for a range of atmospheric aerosol contents. This method, based on global data and accounting for elevation, Earth curvature and mountain screening, allows the evaluation of sky glow conditions over the entire sky for any site in the World, to evaluate its evolution, to disentangle the contribution of individual sources in the surrounding territory, and to identify main contributing sources. Sky brightness, naked eye stellar visibility and telescope limiting magnitude are produced as 3-dimensional arrays whose axes are the position on the sky and the atmospheric clarity. We compared our results to available measurements.



rate research

Read More

This paper presents optical night sky brightness measurements from the stratosphere using CCD images taken with the Super-pressure Balloon-borne Imaging Telescope (SuperBIT). The data used for estimating the backgrounds were obtained during three commissioning flights in 2016, 2018, and 2019 at altitudes ranging from 28 km to 34 km above sea level. For a valid comparison of the brightness measurements from the stratosphere with measurements from mountain-top ground-based observatories (taken at zenith on the darkest moonless night at high Galactic and high ecliptic latitudes), the stratospheric brightness levels were zodiacal light and diffuse Galactic light subtracted, and the airglow brightness was projected to zenith. The stratospheric brightness was measured around 5.5 hours, 3 hours, and 2 hours before the local sunrise time in 2016, 2018, and 2019 respectively. The $B$, $V$, $R$, and $I$ brightness levels in 2016 were 2.7, 1.0, 1.1, and 0.6 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The $B$, $V$, and $R$ brightness levels in 2018 were 1.3, 1.0, and 1.3 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The $U$ and $I$ brightness levels in 2019 were 0.1 mag arcsec$^{-2}$ brighter than the darkest ground-based measurements, whereas the $B$ and $V$ brightness levels were 0.8 and 0.6 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The lower sky brightness levels, stable photometry, and lower atmospheric absorption make stratospheric observations from a balloon-borne platform a unique tool for astronomy. We plan to continue this work in a future mid-latitude long duration balloon flight with SuperBIT.
The analysis of the night cloud cover is very important for astronomical observation in real time, considering a typical observation time of about 15 minutes, and to have a statistics of the night cloud cover. In this paper we use the SQM (Sky Quality Meter) for high resolution temporal analysis of the La Silla and Asiago (Ekar observatory) sky: 3 and 5 minutes respectively. We investigate the annual temporal evolution of the natural contributions of the sky in a site not influenced by artificial light at night (ALAN) and one highly influenced respectively. We also make a correlation between GOES and AQUA satellites data and ground-based SQM data to confirm a relationship between the SQM data and cloud cover. We develop an algorithm that allows the use of the SQM for night cloud detection and we reach a correlation of 97.2% at La Silla and 94.6% at Asiago with the nighttime cloud cover detected by the GOES and AQUA satellites. Our algorithm also classifies the photometric (PN) and spectroscopic nights (SN). We measure 59.1% PN and 21.7% SN for a total percentage of clear nights of 80.8% at La Silla in 2018. The respective Ekar observatory values are 31.1% PN, 24.0% SN and 55.1% of total clear nights time. Application to the SQM network would involve the development of long-term statistics and big data forecasting models, for site testing and real-time astronomical observation.
The photometric sky quality of Mt. Shatdzhatmaz, the site of Sternberg Astronomical Institute Caucasian Observatory 2.5 m telescope, is characterized here by the statistics of the night-time sky brightness and extinction. The data were obtained as a by-product of atmospheric optical turbulence measurements with the MASS (Multi-Aperture Scintillation Sensor) device conducted in 2007--2013. The factors biasing night-sky brightness measurements are considered and a technique to reduce their impact on the statistics is proposed. The single-band photometric estimations provided by MASS are easy to transform to the standard photometric bands. The median moonless night-sky brightness is 22.1, 21.1, 20.3, and 19.0 mag per square arcsec for the $B$, $V$, $R$, and $I$ spectral bands, respectively. The median extinction coefficients for the same photometric bands are 0.28, 0.17, 0.13, and 0.09 mag. The best atmospheric transparency is observed in winter.
158 - I. Plauchu-Frayn 2016
We present optical UBVRI zenith night sky brightness measurements collected on eighteen nights during 2013--2016 and SQM measurements obtained daily over twenty months during 2014--2016 at the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM) in Mexico. The UBVRI data is based upon CCD images obtained with the 0.84m and 2.12m telescopes, while the SQM data is obtained with a high-sensitivity, low-cost photometer. The typical moonless night sky brightness at zenith averaged over the whole period is U = 22.68, B = 23.10, V = 21.84, R = 21.04, I = 19.36, and SQM = 21.88 mag/square arcsec, once corrected for zodiacal light. We find no seasonal variation of the night sky brightness measured with the SQM. The typical night sky brightness values found at OAN-SPM are similar to those reported for other astronomical dark sites at a similar phase of the solar cycle. We find a trend of decreasing night sky brightness with decreasing solar activity during period of the observations. This trend implies that the sky has become darker by delta_U =0.7, delta_B =0.5, delta_V =0.3, delta_R =0.5 mag/square arcsec since early 2014 due to the present solar cycle.
In 2018, Solar Cycle 24 entered into a solar minimum phase. During this period, 11 million zenithal night sky brightness (NSB) data were collected at different dark sites around the planet, including astronomical observatories and natural protected areas, with identical broadband Telescope Encoder and Sky Sensor photometers (based on the Unihedron Sky Quality Meter TSL237 sensor). A detailed observational review of the multiple effects that contribute to the NSB measurement has been conducted with optimal filters designed to avoid brightening effects by the Sun, the Moon, clouds, and other astronomical sources (the Galaxy and zodiacal light). The natural NSB has been calculated from the percentiles for 44 different photometers by applying these new filters. The pristine night sky was measured to change with an amplitude of 0.1 mag/arcsec$^2$ in all the photometers, which is suggested to be due to NSB variations on scales of up to months and to be compatible with semiannual oscillations. We report the systematic observation of short-time variations in NSB on the vast majority of the nights and find these to be related to airglow events forming above the mesosphere.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا