No Arabic abstract
We have derived element abundances in 310 emission-line galaxies from the Early Data Release of the Sloan Digital Sky Survey (SDSS) for which the [O {sc iii}] 4363 emission line was detected, allowing abundance determination by direct methods. We found no extremely metal-deficient galaxy (Z<Zsun/12), probably as a consequence of selection effects in the SDSS sample. The oxygen abundance 12 + log O/H of the SDSS galaxies sample lies in the range from ~7.6 (Zsun/12) to ~8.4 (Zsun/2). This sample is merged with a sample of ~100 blue compact dwarf galaxies with high quality spectra containing some very low-metallicity objects to study the abundance patterns of low-metallicity emission-line galaxies. We find that the $alpha$ element-to-oxygen abundance ratios do not show any significant trends with the oxygen abundance, in agreement with previous studies. The Fe/O abundance ratio is smaller than the solar value, which we interpret as an indication that type Ia supernovae have not yet appeared in these galaxies, implying an age of less than 1-2 Gyr. However, a slight decrease of the Fe/O abundance ratio with increasing metallicity suggests some depletion of iron onto dust in the galaxies with higher metallicities. The N/O abundance ratio ranges from log N/O= -1.6 to -0.8. The fact that no galaxy with log N/O < -1.6 was discovered implies that local low-metallicity emission-line galaxies are of a different nature than high-redshift damped Lyalpha systems with log N/O of ~-2.3 and that their ages are probably larger than 100-300 Myr. Our data indicate the existence of a gradual nitrogen enrichment on a time-scale of a few Myr.
We have compiled a sample of 21 low redshift (z < 0.3), luminous active galactic nuclei (AGN) with large Balmer decrements (Halpha/Hbeta > 7) using the galaxy and QSO catalogs of the Sloan Digital Sky Survey Early Data Release. Using this sample we attempt to determine the fraction of quasars with large internal absorption. We find that these AGN have Strong [O III] and broad Halpha emission, and that starlight dominates the spectra in the blue band, suggesting that these objects are heavily reddened. Their narrow emission line ratios are similar to those of Seyfert 2 galaxies, yet the average [O III]5007 emission is ~10 times more luminous. Applying the empirical relation between the optical continuum and the Balmer line luminosity for blue quasars, we find that the intrinsic luminosities of these 21 objects are in the range for quasars. We propose that they are obscured, intermediate type quasars analogous to type 1.8 and 1.9 Seyfert galaxies. The ratio of these optically selected, intermediate type quasars to type 1 quasars are found to be around 1, similar to that for local Seyfert galaxies. Preliminary study indicates that most of these quasars are hosted in early type galaxies.
We have re-evaluated empirical expressions for the abundance determination of N, O, Ne, S, Cl, Ar and Fe taking into account the latest atomic data and constructing an appropriate grid of photoionization models with state-of-the art model atmospheres. Using these expressions we have derived heavy element abundances in the $sim$ 310 emission-line galaxies from the Data Release 3 of the Sloan Digital Sky Survey (SDSS)with an observed Hbeta flux F(Hbeta)> 1E-14 erg s^{-1} cm^{-2} and for which the [O III] 4363 emission line was detected at least at a 2sigma level, allowing abundance determination by direct methods. The oxygen abundance 12 + log O/H of the SDSS galaxies lies in the range from ~ 7.1 (Zsun/30) to 8.5 (0.7 Zsun). The SDSS sample is merged with a sample of 109 blue compact dwarf (BCD) galaxies with high quality spectra, which contains extremely low-metallicity objects. We use the merged sample to study the abundance patterns of low-metallicity emission-line galaxies. We find that extremely metal-poor galaxies (12 + log O/H < 7.6, i.e. Z < Zsun/12) are rare in the SDSS sample. The alpha element-to-oxygen abundance ratios do not show any significant trends with oxygen abundance, in agreement with previous studies, except for a slight increase of Ne/O with increasing metallicity, which we interpret as due to a moderate depletion of O onto grains in the most metal-rich galaxies. The Fe/O abundance ratio is smaller than the solar value, by up to 1 dex at the high metallicity end. (abridged)
This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)
This paper describes the Third Data Release of the Sloan Digital Sky Survey (SDSS). This release, containing data taken up through June 2003, includes imaging data in five bands over 5282 deg^2, photometric and astrometric catalogs of the 141 million objects detected in these imaging data, and spectra of 528,640 objects selected over 4188 deg^2. The pipelines analyzing both images and spectroscopy are unchanged from those used in our Second Data Release.
The Sloan Digital Sky Survey has validated and made publicly available its Second Data Release. This data release consists of 3324 square degrees of five-band (u g r i z) imaging data with photometry for over 88 million unique objects, 367,360 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 2627 degrees of this area, and tables of measured parameters from these data. The imaging data reach a depth of r ~ 22.2 (95% completeness limit for point sources) and are photometrically and astrometrically calibrated to 2% rms and 100 milli-arcsec rms per coordinate, respectively. The imaging data have all been processed through a new version of the SDSS imaging pipeline, in which the most important improvement since the last data release is fixing an error in the model fits to each object. The result is that model magnitudes are now a good proxy for point spread function (PSF) magnitudes for point sources, and Petrosian magnitudes for extended sources. The spectroscopy extends from 3800 A to 9200 A at a resolution of 2000. The spectroscopic software now repairs a systematic error in the radial velocities of certain types of stars, and has substantially improved spectrophotometry. All data included in the SDSS Early Data Release and First Data Release are reprocessed with the improved pipelines, and included in the Second Data Release. The data are publically available as of 2004 March 15 via the web sites http://www.sdss.org/dr2 and http://skyserver.sdss.org .