No Arabic abstract
We have compiled a sample of 21 low redshift (z < 0.3), luminous active galactic nuclei (AGN) with large Balmer decrements (Halpha/Hbeta > 7) using the galaxy and QSO catalogs of the Sloan Digital Sky Survey Early Data Release. Using this sample we attempt to determine the fraction of quasars with large internal absorption. We find that these AGN have Strong [O III] and broad Halpha emission, and that starlight dominates the spectra in the blue band, suggesting that these objects are heavily reddened. Their narrow emission line ratios are similar to those of Seyfert 2 galaxies, yet the average [O III]5007 emission is ~10 times more luminous. Applying the empirical relation between the optical continuum and the Balmer line luminosity for blue quasars, we find that the intrinsic luminosities of these 21 objects are in the range for quasars. We propose that they are obscured, intermediate type quasars analogous to type 1.8 and 1.9 Seyfert galaxies. The ratio of these optically selected, intermediate type quasars to type 1 quasars are found to be around 1, similar to that for local Seyfert galaxies. Preliminary study indicates that most of these quasars are hosted in early type galaxies.
We present measurements of the spectral properties for a total of 526,265 quasars, out of which 63% have continuum S/N$>3$ pixel$^{-1}$, selected from the fourteenth data release of the Sloan Digital Sky Survey (SDSS-DR14) quasar catalog. We performed a careful and homogeneous analysis of the SDSS spectra of these sources, to estimate the continuum and line properties of several emission lines such as H${alpha}$, H${beta}$, H${gamma}$, Mg textsc{ii}, C textsc{iii]}, C textsc{iv} and Ly${alpha}$. From the derived emission line parameters, we estimated single-epoch virial black hole masses ($M_{mathrm{BH}}$) for the sample using H${beta}$, Mg textsc{ii} and C textsc{iv} emission lines. The sample covers a wide range in bolometric luminosity ($log L_{mathrm{bol}}$; erg s$^{-1}$) between 44.4 and 47.3 and $log M_{mathrm{BH}}$ between 7.1 and 9.9 $M_{odot}$. Using the ratio of $L_{mathrm{bol}}$ to the Eddington luminosity as a measure of the accretion rate, the logarithm of the accretion rate is found to be in the range between $-$2.06 and 0.43. We performed several correlation analyses between different emission line parameters and found them to match with that known earlier using smaller samples. We noticed that strong Fe textsc{ii} sources with large Balmer line width, and highly accreting sources with large $M_{mathrm{BH}}$ are rare in our sample. We make available online an extended and complete catalog that contains various spectral properties of 526,265 quasars derived in this work along with other properties culled from the SDSS-DR14 quasar catalog.
This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)
This paper describes the Third Data Release of the Sloan Digital Sky Survey (SDSS). This release, containing data taken up through June 2003, includes imaging data in five bands over 5282 deg^2, photometric and astrometric catalogs of the 141 million objects detected in these imaging data, and spectra of 528,640 objects selected over 4188 deg^2. The pipelines analyzing both images and spectroscopy are unchanged from those used in our Second Data Release.
The Sloan Digital Sky Survey has validated and made publicly available its Second Data Release. This data release consists of 3324 square degrees of five-band (u g r i z) imaging data with photometry for over 88 million unique objects, 367,360 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 2627 degrees of this area, and tables of measured parameters from these data. The imaging data reach a depth of r ~ 22.2 (95% completeness limit for point sources) and are photometrically and astrometrically calibrated to 2% rms and 100 milli-arcsec rms per coordinate, respectively. The imaging data have all been processed through a new version of the SDSS imaging pipeline, in which the most important improvement since the last data release is fixing an error in the model fits to each object. The result is that model magnitudes are now a good proxy for point spread function (PSF) magnitudes for point sources, and Petrosian magnitudes for extended sources. The spectroscopy extends from 3800 A to 9200 A at a resolution of 2000. The spectroscopic software now repairs a systematic error in the radial velocities of certain types of stars, and has substantially improved spectrophotometry. All data included in the SDSS Early Data Release and First Data Release are reprocessed with the improved pipelines, and included in the Second Data Release. The data are publically available as of 2004 March 15 via the web sites http://www.sdss.org/dr2 and http://skyserver.sdss.org .
We present the Data Release 9 Quasar (DR9Q) catalog from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. The catalog includes all BOSS objects that were targeted as quasar candidates during the survey, are spectrocopically confirmed as quasars via visual inspection, have luminosities Mi[z=2]<-20.5 (in a $Lambda$CDM cosmology with H0 = 70 km/s/Mpc, $Omega_{rm M}$ = 0.3, and $Omega_{Lambda}$ = 0.7) and either display at least one emission line with full width at half maximum (FWHM) larger than 500 km/s or, if not, have interesting/complex absorption features. It includes as well, known quasars (mostly from SDSS-I and II) that were reobserved by BOSS. This catalog contains 87,822 quasars (78,086 are new discoveries) detected over 3,275 deg$^{2}$ with robust identification and redshift measured by a combination of principal component eigenspectra newly derived from a training set of 8,632 spectra from SDSS-DR7. The number of quasars with $z>2.15$ (61,931) is ~2.8 times larger than the number of z>2.15 quasars previously known. Redshifts and FWHMs are provided for the strongest emission lines (CIV, CIII], MgII). The catalog identifies 7,533 broad absorption line quasars and gives their characteristics. For each object the catalog presents five-band (u,g,r,i,z) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys.