Do you want to publish a course? Click here

Chemical Enrichment in Damped Lyman Alpha Systems From Hierarchical Galaxy Formation Models

58   0   0.0 ( 0 )
 Added by Katsuya Okoshi
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate chemical enrichment in Damped Lyman alpha (DLA) systems in the hierarchical structure formation scenario using a semi-analytic model of galaxy formation. The model developed by Nagashima, Totani, Gouda and Yoshii takes into account various selection effects on high-redshift galaxies and can show fundamental observational properties of galaxies, such as luminosity functions and number-magnitude/redshift relations. DLA systems offer the possibilities of measuring metal abundance more accurately than faint galaxies. For example, recent measurements of zinc abundance can provide good evidence for understanding the processes of metal pollution and star formation in DLA systems because zinc is virtually unaffected by dust depletion. Here we focus on this advantage for observation in order to explore the metallicity evolution in DLA systems at high redshifts. We can consistently show the metallicity evolution for reasonable models which also reproduce fundamental properties of local galaxy population. This result suggests that the chemical evolution of DLA systems can be consistently reconciled with the observational features of typical galaxies. We also investigate other properties of DLA systems (column density distribution and mass density of cold gas), and find that star formation in massive galaxies should be more active than that in low-mass ones. This is consistent with the results by Nagashima et al. and Cole et al. in which the star formation timescale is set by reproducing cold gas mass fraction in local spiral galaxies. Finally we discuss host galaxies associated with DLA systems. We conclude that they primarily consist of sub-L* and/or dwarf galaxies from the observations.



rate research

Read More

We investigate Damped Ly-alpha absorbing galaxies (DLA galaxies) at low redshifts z<1 in the hierarchical structure formation scenario to clarify the nature of DLA galaxies because observational data of such galaxies mainly at low redshifts are currently available. We find that our model well reproduces distributions of fundamental properties of DLA galaxies such as luminosities, column densities, impact parameters obtained by optical and near-infrared imagings. Our results suggest that DLA systems primarily consist of low luminosity galaxies with small impact parameters (typical radius about 3 kpc, surface brightness from 22 to 27 mag arcsec^{-2}) similar to low surface brightness (LSB) galaxies. In addition, we investigate selection biases arising from the faintness and from the masking effect which prevents us from identifying a DLA galaxy hidden or contaminated by a point spread function of a background quasar. We find that the latter affects the distributions of DLA properties more seriously rather than the former, and that the observational data are well reproduced only when taking into account the masking effect. The missing rate of DLA galaxies by the masking effect attains 60-90 % in the sample at redshift 0<z<1 when an angular size limit is as small as 1 arcsec. Furthermore we find a tight correlation between HI mass and cross section of DLA galaxies, and also find that HI-rich galaxies with M(HI) sim 10^{9} M_sun dominate DLA systems. These features are entirely consistent with those from the Arecibo Dual-Beam Survey which is a blind 21 cm survey. Finally we discuss star formation rates, and find that they are typically about 10^{-2} M_sun yr^{-1} as low as those in LSB galaxies.
We report evidence for a bimodality in damped Ly systems (DLAs). Using [C II] 158 mu cooling rates, lc, we find a distribution with peaks at lc=10^-27.4 and 10^-26.6 ergs s^-1 H^-1 separated by a trough at lc^crit ~= lc < 10^-27.0 ergs s^-1 H^-1. We divide the sample into low cool DLAs with lc < lc^crit and high cool DLAs with lc > lc^crit and find the Kolmogorv-Smirnov probabilities that velocity width, metallicity, dust-to-gas ratio, and Si II equivalent width in the two subsamples are drawn from the same parent population are small. All these quantities are significantly larger in the high cool population, while the H I column densities are indistinguishable in the two populations. We find that heating by X-ray and FUV background radiation is insufficient to balance the cooling rates of either population. Rather, the DLA gas is heated by local radiation fields. The rare appearance of faint, extended objects in the Hubble Ultra Deep Field rules out in situ star formation as the dominant star-formation mode for the high cool population, but is compatible with in situ star formation as the dominant mode for the low cool population. Star formation in the high cool DLAs likely arises in Lyman Break galaxies. We investigate whether these properties of DLAs are analogous to the bimodal properties of nearby galaxies. Using Si II equivalent width as a mass indicator, we construct bivariate distributions of metallicity, lc, and areal SFR versus the mass indicators. Tentative evidence is found for correlations and parallel sequences, which suggest similarities between DLAs and nearby galaxies. We suggest that the transition-mass model provides a plausible scenario for the bimodality we have found. As a result, the bimodality in current galaxies may have originated in DLAs.
The XQ-100 survey has provided high signal-noise spectra of 100 redshift 3-4.5 quasars with the X-Shooter spectrograph. The metal abundances for 13 elements in the 41 damped Lyman alpha systems (DLAs) identified in the XQ-100 sample are presented, and an investigation into abundances of a variety of DLA classes is conducted. The XQ-100 DLA sample contains five DLAs within 5000 km/s of their host quasar (proximate DLAs; PDLAs) as well as three sightlines which contain two DLAs within 10,000 km/s of each other along the same line-of-sight (multiple DLAs; MDLAs). Combined with previous observations in the literature, we demonstrate that PDLAs with logN(HI)<21.0 show lower [S/H] and [Fe/H] (relative to intervening systems with similar redshift and N(HI)), whilst higher [S/H] and [Si/H] are seen in PDLAs with logN(HI)>21.0. These abundance discrepancies are independent of their line-of-sight velocity separation from the host quasar, and the velocity width of the metal lines (v90). Contrary to previous studies, MDLAs show no difference in [alpha/Fe] relative to single DLAs matched in metallicity and redshift. In addition, we present follow-up UVES data of J0034+1639, a sightline containing three DLAs, including a metal-poor DLA with [Fe/H]=-2.82 (the third lowest [Fe/H] in DLAs identified to date) at z=4.25. Lastly we study the dust-corrected [Zn/Fe], emphasizing that near-IR coverage of X-Shooter provides unprecedented access to MgII, CaII and TiII lines (at redshifts 3-4) to provide additional evidence for subsolar [Zn/Fe] ratio in DLAs.
66 - M. T. Murphy 2003
The chemical abundances in damped Lyman-alpha systems (DLAs) show more than 2 orders of magnitude variation at a given epoch, possibly because DLAs arise in a wide variety of host galaxies. This could significantly bias estimates of chemical evolution. We explore the possibility that DLAs in which H_2 absorption is detected may trace cosmological chemical evolution more reliably since they may comprise a narrower set of physical conditions. The 9 known H_2 absorption systems support this hypothesis: metallicity exhibits a faster, more well-defined evolution with redshift than in the general DLA population. The dust-depletion factor and, particularly, H_2 molecular fraction also show rapid increases with decreasing redshift. We comment on possible observational selection effects which may bias this evolution. Larger samples of H_2-bearing DLAs are clearly required and may constrain evolution of the UV background and DLA galaxy host type with redshift.
We have identified a metal-strong (logN(Zn+) > 13.15 or logN(Si+) > 15.95) DLA (MSDLA) population from an automated quasar (QSO) absorber search in the Sloan Digital Sky Survey Data Release 3 (SDSS-DR3) quasar sample, and find that MSDLAs comprise ~5% of the entire DLA population with z_abs > 2.2 found in QSO sightlines with r < 19.5. We have also acquired 27 Keck ESI follow-up spectra of metal-strong candidates to evaluate our automated technique and examine the MSDLA candidates at higher resolution. We demonstrate that the rest equivalent widths of strong ZnII 2026 and SiII 1808 lines in low-resolution SDSS spectra are accurate metal-strong indicators for higher-resolution spectra, and predict the observed equivalent widths and signal-to-noise ratios needed to detect certain extremely weak lines with high-resolution instruments. We investigate how the MSDLAs may affect previous studies concerning a dust-obscuration bias and the N(HI)-weighted cosmic mean metallicity <Z(z)>. Finally, we include a brief discussion of abundance ratios in our ESI sample and find that underlying mostly Type II supernovae enrichment are differential depletion effects due to dust (and in a few cases quite strong); we present here a handful of new Ti and Mn measurements, both of which are useful probes of depletion in DLAs. Future papers will present detailed examinations of particularly metal-strong DLAs from high-resolution KeckI/HIRES and VLT/UVES spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا