No Arabic abstract
We report the XMM-Newton observation of a large X-ray flare from the Herbig Ae star V892 Tau. The apparent low mass companion of V892 Tau, V892 Tau NE, is unresolved by XMM-Newton. Nevertheless there is compelling evidence from combined XMM-Newton and Chandra data that the origin of the flare is the Herbig Ae star V892 Tau. During the flare the X-ray luminosity of V892 Tau increases by a factor of ~15, while the temperature of the plasma increases from kT ~ 1.5 keV to kT ~ 8 keV. From the scaling of the flare event, based on hydrodynamic modeling, we conclude that a 500 G magnetic field is needed in order to confine the plasma. Under the assumptions that a dynamo mechanism is required to generate such a confining magnetic field and that surface convection is a necessary ingredient for a dynamo, our findings provide indirect evidence for the existence of a significant convection zone in the stellar envelope of Herbig Ae stars.
We report the discovery of a circumbinary disk around the Herbig Ae/Be system v892 Tau. Our detailed mid-infrared images were made using segment-tilting interferometry on the Keck-1 Telescope and reveal an asymmetric disk inclined at ~60 degs with an inner hole diameter of 250 mas (35 AU), approximately 5X larger than the apparent separation of the binary components. In addition, we report a new measurement along the binary orbit using near-infrared Keck aperture masking, allowing a crude estimate of orbital parameters and the system mass for the first time. The size of the inner hole appears to be consistent with the minimum size prediction from tidal truncation theory, bearing a resemblance to the recently unmasked binary CoKu Tau/4. Our results have motivated a re-analysis of the system spectral energy distribution, concluding the luminosity of this system has been severely underestimated. With further study and monitoring, v892 Tau should prove a powerful testing ground for both predictions of dynamical models for disk-star interactions in young systems with gas-rich disks and for calibrations of pre-main-sequence tracks for intermediate-mass stars.
Chandra X-ray imaging spectroscopy of the nearby Herbig Ae star HD 163296 at 100 AU angular resolution is reported. A point-like, soft (kT~0.5 keV), emission-line source is detected at the location of the star with an X-ray luminosity of 4.0e29 erg/s. In addition, faint emission along the direction of a previously-detected Ly-alpha-emitting jet and Herbig-Haro outflow may be present. The relatively low luminosity, lack of a hard spectral component, and absence of strong X-ray variability in HD 163296 can be explained as originating from optically-thin shock-heated gas accreting onto the stellar surface along magnetic field lines. This would require a (dipole) magnetic field strength at the surface of HD 163296 of at least ~100 G and perhaps as high as several kG. HD 163296 joins the T Tauri star TW Hya in being the only examples known to date of pre-main-sequence stars whose quiescent X-ray emission appears to be completely dominated by accretion.
We performed a systematic search for Chandra archival observations of Herbig Ae/Be stars. These stars are fully radiative and not expected to support dynamo action analogous to their convective lower-mass counterparts, the T Tauri stars. Their X-ray emission has remained unexplained. The superior spatial resolution of Chandra with respect to previous X-ray instrumentation has allowed us to examine the possible role of late-type companions in generating the observed X-rays. In the total sample of 17 Herbig Ae/Be stars, 8 are resolved from X-ray emitting faint companions or other unrelated X-ray bright objects within 10. The detection fraction of Herbig Ae/Be stars is 76 %, but lowers to 35 % if all emission is attributed to further known and unresolved companions. The spectral analysis confirms the high X-ray temperatures (~ 20 MK) and large range of fractional X-ray luminosities (log L_x/L_star) of this class derived from earlier studies of individual objects. Radiative winds are ruled out as emission mechanism on basis of the high temperatures. The X-ray properties of Herbig Ae/Be stars are not vastly different from those of their late-type companion stars (if such are known), nor from other young late-type stars used for comparison. Therefore, either a similar kind of process takes place on both classes of objects, or there must be as yet undiscovered companion stars.
We present Submillimeter Array observations of the Herbig Ae star HD169142 in 1.3 millimeter continuum emission and 12CO J=2-1 line emission at 1.5 arcsecond resolution that reveal a circumstellar disk. The continuum emission is centered on the star position and resolved, and provides a mass estimate of about 0.02 solar masses for the disk. The CO images show patterns in position and velocity that are well matched by a disk in Keplerian rotation with low inclination to the line-of-sight. We use radiative transfer calculations based on a flared, passive disk model to constrain the disk parameters by comparison to the spectral line emission. The derived disk radius is 235 AU, and the inclination is 13 degrees. The model also necessitates modest depletion of the CO molecules, similar to that found in Keplerian disks around T Tauri stars.
PDS 144 is a pair of Herbig Ae stars that are separated by 5.35 on the sky. It has previously been shown to have an A2Ve Herbig Ae star viewed at 83circ inclination as its northern member and an A5Ve Herbig Ae star as its southern member. Direct imagery revealed a disk occulting PDS 144 N - the first edge-on disk observed around a Herbig Ae star. The lack of an obvious disk in direct imagery suggested PDS 144 S might be viewed face-on or not physically associated with PDS 144 N. Multi-epoch Hubble Space Telescope imagery of PDS 144 with a 5 year baseline demonstrates PDS 144 N & S are comoving and have a common proper motion with TYC 6782-878-1. TYC 6782-878-1 has previously been identified as a member of Upper Sco sub-association A at d = 145 pm 2 pc with an age of 5-10 Myr. Ground-based imagery reveals jets and a string of Herbig-Haro knots extending 13 (possibly further) which are aligned to within 7circ pm 6circ on the sky. By combining proper motion data and the absence of a dark mid-plane with radial velocity data, we measure the inclination of PDS 144 S to be i = 73circ pm 7circ. The radial velocity of the jets from PDS 144 N & S indicates they, and therefore their disks, are misaligned by 25circ pm 9circ. This degree of misalignment is similar to that seen in T Tauri wide binaries.