Do you want to publish a course? Click here

PDS 144: The First Confirmed Herbig Ae - Herbig Ae Wide Binary

155   0   0.0 ( 0 )
 Added by Jeremy Hornbeck
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

PDS 144 is a pair of Herbig Ae stars that are separated by 5.35 on the sky. It has previously been shown to have an A2Ve Herbig Ae star viewed at 83circ inclination as its northern member and an A5Ve Herbig Ae star as its southern member. Direct imagery revealed a disk occulting PDS 144 N - the first edge-on disk observed around a Herbig Ae star. The lack of an obvious disk in direct imagery suggested PDS 144 S might be viewed face-on or not physically associated with PDS 144 N. Multi-epoch Hubble Space Telescope imagery of PDS 144 with a 5 year baseline demonstrates PDS 144 N & S are comoving and have a common proper motion with TYC 6782-878-1. TYC 6782-878-1 has previously been identified as a member of Upper Sco sub-association A at d = 145 pm 2 pc with an age of 5-10 Myr. Ground-based imagery reveals jets and a string of Herbig-Haro knots extending 13 (possibly further) which are aligned to within 7circ pm 6circ on the sky. By combining proper motion data and the absence of a dark mid-plane with radial velocity data, we measure the inclination of PDS 144 S to be i = 73circ pm 7circ. The radial velocity of the jets from PDS 144 N & S indicates they, and therefore their disks, are misaligned by 25circ pm 9circ. This degree of misalignment is similar to that seen in T Tauri wide binaries.



rate research

Read More

124 - A. Carmona 2010
We present FEROS high-resolution (R~45000) optical spectroscopy of 34 Herbig Ae/Be star candidates with previously unknown or poorly constrained spectral types. Within the sample, 16 sources are positionally coincident with nearby (d<250 pc) star-forming regions (SFRs). All the candidates have IR excess. We determine the spectral type and luminosity class of the sources, derive their radial and rotational velocities, and constrain their distances employing spectroscopic parallaxes. We confirm 13 sources as Herbig Ae/Be stars and find one classical T Tauri star. Three sources are emission line early-type giants and may be Herbig Ae/Be stars. One source is a main-sequence A-type star. Fourteen sources are post-main-sequence giant and supergiant stars. Two sources are extreme emission-line stars. Most of the sources appear to be background stars at distances over 700 pc. We show that high-resolution optical spectroscopy is a crucial tool for distinguishing young stars from post-main sequence stars in samples taken from emission-line star catalogs based on low-resolution spectroscopy. Within the sample, 3 young stars (CD-38 4380, Hen 3-1145, and HD 145718) and one early-type luminosity class III giant with emission lines (Hen 3-416) are at distances closer than 300 pc and are positionally coincident with a nearby SFR. These 4 sources are likely to be nearby young stars and are interesting for follow-up observations at high-angular resolution. Furthermore, seven confirmed Herbig Ae/Be stars at d>700 pc (Hen 2-80, Hen 3-1121 N&S, HD 313571, MWC 953, WRAY 15-1435, and Th 17-35) are inside or close (<5) to regions with extended 8 micron continuum emission and in their 20 vicinity have astronomical sources characteristic of SFRs. These 7 sources are likely to be members of SFRs. These regions are attractive for future studies of their stellar content.
We report on the status of our spectropolarimetric studies of Herbig Ae/Be stars carried out during the last years. The magnetic field geometries of these stars, investigated with spectropolarimetric time series, can likely be described by centred dipoles with polar magnetic field strengths of several hundred Gauss. A number of Herbig Ae/Be stars with detected magnetic fields have recently been observed with X-shooter in the visible and the near-IR, as well as with the high-resolution near-IR spectrograph CRIRES. These observations are of great importance to understand the relation between the magnetic field topology and the physics of the accretion flow and the accretion disk gas emission.
143 - Jorick S. Vink 2015
Accretion is the prime mode of star formation, but the exact mode has not yet been identified in the Herbig Ae/Be mass range. We provide evidence that the the maximum variation in mass-accretion rate is reached on a rotational timescale, which suggests that rotational modulation is the key to understanding mass accretion. We show how spectropolarimetry is uniquely capable of resolving the innermost (within 0.1 AU) regions between the star and the disk, allowing us to map the 3D geometry of the accreting gas, and test theories of angular momentum evolution. We present Monte Carlo line-emission simulations showing how one would observe changes in the polarisation properties on rotational timescales, as accretion columns come and go into our line of sight.
The more massive counterparts of T Tauri stars, Herbig Ae/Be stars, are known to vary in a complex way with no variability mechanism clearly identified. We attempt to characterize the optical variability of HD~37806 (MWC 120) on time scales ranging between minutes and several years. A continuous, one-minute resolution, 21 day-long sequence of MOST (Microvariability & Oscillations of STars) satellite observations has been analyzed using wavelet, scalegram and dispersion analysis tools. The MOST data have been augmented by sparse observations over 9 seasons from ASAS (All Sky Automated Survey), by previously non-analyzed ESO (European Southern Observatory) data partly covering 3 seasons and by archival measurements dating back half a century ago. Mutually superimposed flares or accretion instabilities grow in size from about 0.0003 of the mean flux on a time scale of minutes to a peak-to-peak range of <~0.05 on a time scale of a few years. The resulting variability has properties of stochastic red noise, whose self-similar characteristics are very similar to those observed in cataclysmic binary stars, but with much longer characteristic time scales of hours to days (rather than minutes) and with amplitudes which appear to cease growing in size on time scales of tens of years. In addition to chaotic brightness variations combined with stochastic noise, the MOST data show a weakly defined cyclic signal with a period of about 1.5 days, which may correspond to the rotation of the star.
CONTEXT: The study of pulsation in Pre--Main--Sequence intermediate-mass stars represents an important tool for deriving information on fundamental stellar parameters and internal structure, as well as for testing current theoretical models. Interest in this class of variable stars has significantly increased during the last decade and about 30 members are presently known in the literature. AIMS: We have constructed the frequency spectrum of the oscillations in V346 Ori. We apply asteroseismic tools to these data to estimate the intrinsic parameters (mass, luminosity, effective temperature) of V346 Ori and to obtain information on its internal structure. METHODS: CCD time series photometry in the Johnson V filter has been obtained for a total of 145.7 h of observations distributed over 36 nights. The resulting light curves have been subjected to a detailed frequency analysis using updated numerical techniques. Photometric and spectroscopic data have also been acquired to determine reliable estimates of the stellar properties. RESULTS: We have identified 13 oscillation frequencies, 6 of which with higher significance. These have been compared with the predictions of non-radial adiabatic models. The resulting best fit model has a mass of 2.1$pm$0.2 $M_{odot}$, luminosity $log{L/L_{odot}}=1.37^{+0.11}_{-0.13}$, and effective temperature 7300$pm$200 K. These values are marginally consistent with the association of V346 Ori to Orion OB1a. Alternatively, V346 Ori could be placed at a slightly larger distance than previously estimated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا