Do you want to publish a course? Click here

ACBAR: The Arcminute Cosmology Bolometer Array Receiver

85   0   0.0 ( 0 )
 Added by Marcus Runyan
 Publication date 2003
  fields Physics
and research's language is English
 Authors M. C. Runyan




Ask ChatGPT about the research

We describe the Arcminute Cosmology Bolometer Array Receiver (ACBAR); a multifrequency millimeter-wave receiver designed for observations of the Cosmic Microwave Background (CMB) and the Sunyaev-Zeldovich effect in clusters of galaxies. The ACBAR focal plane consists of a 16-pixel, background-limited, 240 mK bolometer array that can be configured to observe simultaneously at 150, 220, 280, and 350 GHz. With 4-5 FWHM Gaussian beam sizes and a 3 degree azimuth chop, ACBAR is sensitive to a wide range of angular scales. ACBAR was installed on the 2 m Viper telescope at the South Pole in January 2001. We describe the design of the instrument and its performance during the 2001 and 2002 observing seasons.



rate research

Read More

87 - M. C. Runyan 2003
We review the first science results from the Arcminute Cosmology Bolometer Array Receiver (ACBAR); a multifrequency millimeter-wave receiver optimized for observations of the Cosmic Microwave Background (CMB) and the Sunyaev-Zeldovich (SZ) effect in clusters of galaxies. ACBAR was installed on the 2 m Viper telescope at the South Pole in January 2001 and the results presented here incorporate data through July 2002. We present the power spectrum of the CMB at 150 GHz over the range ell = 150 - 3000 measured by ACBAR as well as estimates for the values of the cosmological parameters within the context of Lambda-CDM models. We find that the inclusion of Omega_Lambda greatly improves the fit to the power spectrum. We also observe a slight excess of small-scale anisotropy at 150 GHz; if interpreted as power from the SZ effect of unresolved clusters, the measured signal is consistent with CBI and BIMA within the context of the SZ power spectrum models tested.
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne telescope mission to search for inflationary gravitational waves from the early universe. PIPER employs two 32x40 arrays of superconducting transition-edge sensors, which operate at 100 mK. An open bucket dewar of liquid helium maintains the receiver and telescope optics at 1.7 K. We describe the thermal design of the receiver and sub-kelvin cooling with a continuous adiabatic demagnetization refrigerator (CADR). The CADR operates between 70-130 mK and provides ~10 uW cooling power at 100 mK, nearly five times the loading of the two detector assemblies. We describe electronics and software to robustly control the CADR, overall CADR performance in flight-like integrated receiver testing, and practical considerations for implementation in the balloon float environment.
The Cosmology Large Angular Scale Surveyor consists of four instruments performing a CMB polarization survey. Currently, the 40 GHz and first 90 GHz instruments are deployed and observing, with the second 90 GHz and a multichroic 150/220 GHz instrument to follow. The receiver is a central component of each instruments design and functionality. This paper describes the CLASS receiver design, using the first 90 GHz receiver as a primary reference. Cryogenic cooling and filters maintain a cold, low-noise environment for the detectors. We have achieved receiver detector temperatures below 50 mK in the 40 GHz instrument for 85% of the initial 1.5 years of operation, and observed in-band efficiency that is consistent with pre-deployment estimates. At 90 GHz, less than 26% of in-band power is lost to the filters and lenses in the receiver, allowing for high optical efficiency. We discuss the mounting scheme for the filters and lenses, the alignment of the cold optics and detectors, stray light control, and magnetic shielding.
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of $^{130}$Te and other rare events. The CUORE detector consists of 988 TeO$_2$ bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.
An FPGA-based digital-receiver has been developed for a low-frequency imaging radio interferometer, the Murchison Widefield Array (MWA). The MWA, located at the Murchison Radio-astronomy Observatory (MRO) in Western Australia, consists of 128 dual-polarized aperture-array elements (tiles) operating between 80 and 300,MHz, with a total processed bandwidth of 30.72 MHz for each polarization. Radio-frequency signals from the tiles are amplified and band limited using analog signal conditioning units; sampled and channelized by digital-receivers. The signals from eight tiles are processed by a single digital-receiver, thus requiring 16 digital-receivers for the MWA. The main function of the digital-receivers is to digitize the broad-band signals from each tile, channelize them to form the sky-band, and transport it through optical fibers to a centrally located correlator for further processing. The digital-receiver firmware also implements functions to measure the signal power, perform power equalization across the band, detect interference-like events, and invoke diagnostic modes. The digital-receiver is controlled by high-level programs running on a single-board-computer. This paper presents the digital-receiver design, implementation, current status, and plans for future enhancements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا