No Arabic abstract
A large spectroscopic survey is constructed of galaxies in the Coma cluster. The survey covers a wide area (1 deg$^2$) to deep magnitudes (R ~ 19.5), covering both the core (high density) and outskirts (intermediate to low density) of the cluster. The spectroscopic sample consists of a total of 1191 galaxies, of which, 760 galaxies are confirmed members of the Coma cluster. A statistical technique is developed to correct the spectroscopic sample for incompletness. The corrected sample is then used to construct R-band luminosity function (LF) spanning a range of 7 magnitudes (-23 < M_R < -16) both at the core and outskirts of the cluster. Dependence of the LF on local environment in Coma is explored. The LFs are found to be the same, within the errors, between the inner and outer regions and close to those from recent measurements for field galaxies. The total B-band LF for the Coma cluster, fitted to a Schecter form is also measured and shows a dip at M(B) = -18 mag., in agreement with previous studies. The implications of this feature are discussed. The LF is studied in B-R color intervals and shows a steep faint-end slope for red (B-R > 1.35) galaxies, both at the core and outskirts of the cluster. This population of low luminosity red galaxies has a higher surface density than the blue (B-R < 1.35) star-forming population, dominating the faint-end of the Coma cluster LF. It is found that relative number of high surface brightness galaxies is larger at the cluster core, implying destruction of low surface brightness galaxies in dense core environment.
This is the second paper in a series studying the photometric and spectroscopic properties of galaxies of different luminosities in the Coma cluster. The sample selection, spectroscopic observations and completeness functions are presented here. To study the spectral properties of galaxies as a function of their local environment, two fields were selected for spectroscopic observations to cover both the core (Coma1) and outskirts (ie. south-west of the core and centered on NGC4839)- (Coma3) of the cluster. Medium resolution spectroscopy (6-9 AA) was carried out for a total of 490 galaxies in both fields (302 in Coma1 and 188 in Coma3), using the WYFFOS multi-fiber spectrograph on the William Herschel Telescope. The galaxies cover a range of $12 < R < 20$, corresponding to -23 < M_R < -15 (H0=65 km/sec/Mpc). The redshifts are measured with an accuracy of 100 km/sec. The spectral line strengths and equivalent widths are also measured for the same galaxies and analysed in Poggianti et al (2001- paper III). A total of 189 (Coma1) and 90 (Coma3) galaxies are identified as members of the Coma cluster. An analysis of the colors show that only two members of the Coma cluster in our sample have B-R > 2. The completeness functions for the spectroscopic sample is presented.
We investigate the radial dependence of the spectroscopic properties, in particular the Mg2, <Fe> and H beta spectroscopic indices, in a sample of galaxies spanning a wide range of absolute luminosity in the Coma cluster. After allowing for the magnitude dependence of these indices, we find a significant gradient in Mg2, in the sense that galaxies in the core of the cluster have stronger Mg2. We find only weak gradients in <Fe> and H beta. Using the model grids presented in an earlier paper in this series, we attribute the Mg2 gradient to changes in metal abundance. One possible mechanism to create this abundance gradient is pressure confinement by the intracluster medium of material from Supernova driven winds early in the history of the galaxies.
The XMM-Newton survey of the Coma cluster of galaxies covers an area of 1.86 square degrees with a mosaic of 16 pointings and has a total useful integration time of 400 ksec. Detected X-ray sources with extent less than 10 were correlated with cataloged galaxies in the Coma cluster region. The redshift information, which is abundant in this region of the sky, allowed us to separate cluster members from background and foreground galaxies. For the background sources, we recover a typical LogN-LogS in the flux range 1.e-15 - 1.e-13 ergs/s/cm^2 in the 0.5-2.0 keV band. The X-ray emission from the cluster galaxies exhibits X-ray colors typical of thermal emission. The luminosities of Coma galaxies lie in the 1.e39-1.e41 ergs/s interval in the 0.5-2.0 keV band. The luminosity function of Coma galaxies reveals that their X-ray activity is suppressed with respect to the field by a factor of 5.6, indicating a lower level of X-ray emission for a given stellar mass.
We investigate the stellar populations in a sample of 89 faint (M*+2 to M*+4) red galaxies in the Coma cluster, using high S/N spectroscopy from the MMT. Our sample is drawn from two 1-degree fields, one centred on the cluster core and the other located a degree to the south west of the cluster centre. For a comparison sample we use published high-S/N data for red-sequence galaxies in the Shapley Supercluster. We use state-of-the-art stellar population models to infer the SSP-equivalent age and metallicity (Fe/H) for each galaxy, as well as the abundances of the light elements Mg, Ca, C and N. The ages of the Coma dwarfs span a wide range from <2 Gyr to >10 Gyr, with a strong environmental dependence. The oldest galaxies are found only in the core, while most of the galaxies in the outer south-west field have ages ~3 Gyr. The galaxies have a metallicity range -1.0 < [Fe/H] < 0.0, and follow the same age-metallicity-mass plane as high-mass galaxies, but with increased intrinsic scatter. The Mg/Fe abundance ratios are on average slightly super-solar, and span a range -0.1 < [Mg/Fe] < +0.4. The highest Mg enhancements are found only in the cluster core, while solar ratios predominate in the outskirts. Depending on the assumed star-formation history (quenched versus burst-dominated), the number of dwarf galaxies on the red sequence in the Coma core has doubled since z~0.4-0.7. These estimates bracket the red-sequence growth timescales found by direct studies of distant clusters. In the south-west field, the red sequence was established only at z~0.1-0.2. Our observations confirm previous indications of very recently quenched star formation in this part of the cluster. Our results support the picture in which much of the cluster passive dwarf population was generated by environment-driven transformation of infalling late-type galaxies.
The globular cluster luminosity function, specific globular cluster frequency, S_N, specific globular cluster mass, T_MP, and globular cluster mass fraction in dwarf elliptical galaxies are explored using the full 69 galaxy sample of the HST WFPC2 Dwarf Elliptical Galaxy Snapshot Survey. The GCLFs of the dEs are well-represented with a t_5 function with a peak at M_{V,Z}^0(dE,HST) = -7.3 +/- 0.1. This is ~0.3 magnitudes fainter than the GCLF peaks in giant spiral and elliptical galaxies, but the results are consistent within the uncertainties. The bright-end slope of the luminosity distribution has a power-law form with slope alpha = -1.9 +/- 0.1. The trend of increasing S_N or T_MP with decreasing host galaxy luminosity is confirmed. The mean value for T_MP in dE,N galaxies is about a factor of two higher than the mean value for non-nucleated galaxies and the distributions of T_MP in dE,N and dE,noN galaxies are statistically different. These data are combined with results from the literature for a wide range of galaxy types and environments. At low host galaxy masses the distribution of T_MP for dE,noN and dI galaxies are similar. This supports the idea that one pathway for forming dE,noN galaxies is by the stripping of dIs. The formation of nuclei and the larger values of T_MP in dE,N galaxies may be due to higher star formation rates and star cluster formation efficiencies due to interactions in galaxy cluster environments.