No Arabic abstract
We investigate the radial dependence of the spectroscopic properties, in particular the Mg2, <Fe> and H beta spectroscopic indices, in a sample of galaxies spanning a wide range of absolute luminosity in the Coma cluster. After allowing for the magnitude dependence of these indices, we find a significant gradient in Mg2, in the sense that galaxies in the core of the cluster have stronger Mg2. We find only weak gradients in <Fe> and H beta. Using the model grids presented in an earlier paper in this series, we attribute the Mg2 gradient to changes in metal abundance. One possible mechanism to create this abundance gradient is pressure confinement by the intracluster medium of material from Supernova driven winds early in the history of the galaxies.
This is the second paper in a series studying the photometric and spectroscopic properties of galaxies of different luminosities in the Coma cluster. The sample selection, spectroscopic observations and completeness functions are presented here. To study the spectral properties of galaxies as a function of their local environment, two fields were selected for spectroscopic observations to cover both the core (Coma1) and outskirts (ie. south-west of the core and centered on NGC4839)- (Coma3) of the cluster. Medium resolution spectroscopy (6-9 AA) was carried out for a total of 490 galaxies in both fields (302 in Coma1 and 188 in Coma3), using the WYFFOS multi-fiber spectrograph on the William Herschel Telescope. The galaxies cover a range of $12 < R < 20$, corresponding to -23 < M_R < -15 (H0=65 km/sec/Mpc). The redshifts are measured with an accuracy of 100 km/sec. The spectral line strengths and equivalent widths are also measured for the same galaxies and analysed in Poggianti et al (2001- paper III). A total of 189 (Coma1) and 90 (Coma3) galaxies are identified as members of the Coma cluster. An analysis of the colors show that only two members of the Coma cluster in our sample have B-R > 2. The completeness functions for the spectroscopic sample is presented.
A large spectroscopic survey is constructed of galaxies in the Coma cluster. The survey covers a wide area (1 deg$^2$) to deep magnitudes (R ~ 19.5), covering both the core (high density) and outskirts (intermediate to low density) of the cluster. The spectroscopic sample consists of a total of 1191 galaxies, of which, 760 galaxies are confirmed members of the Coma cluster. A statistical technique is developed to correct the spectroscopic sample for incompletness. The corrected sample is then used to construct R-band luminosity function (LF) spanning a range of 7 magnitudes (-23 < M_R < -16) both at the core and outskirts of the cluster. Dependence of the LF on local environment in Coma is explored. The LFs are found to be the same, within the errors, between the inner and outer regions and close to those from recent measurements for field galaxies. The total B-band LF for the Coma cluster, fitted to a Schecter form is also measured and shows a dip at M(B) = -18 mag., in agreement with previous studies. The implications of this feature are discussed. The LF is studied in B-R color intervals and shows a steep faint-end slope for red (B-R > 1.35) galaxies, both at the core and outskirts of the cluster. This population of low luminosity red galaxies has a higher surface density than the blue (B-R < 1.35) star-forming population, dominating the faint-end of the Coma cluster LF. It is found that relative number of high surface brightness galaxies is larger at the cluster core, implying destruction of low surface brightness galaxies in dense core environment.
We investigate the stellar populations in a sample of 89 faint (M*+2 to M*+4) red galaxies in the Coma cluster, using high S/N spectroscopy from the MMT. Our sample is drawn from two 1-degree fields, one centred on the cluster core and the other located a degree to the south west of the cluster centre. For a comparison sample we use published high-S/N data for red-sequence galaxies in the Shapley Supercluster. We use state-of-the-art stellar population models to infer the SSP-equivalent age and metallicity (Fe/H) for each galaxy, as well as the abundances of the light elements Mg, Ca, C and N. The ages of the Coma dwarfs span a wide range from <2 Gyr to >10 Gyr, with a strong environmental dependence. The oldest galaxies are found only in the core, while most of the galaxies in the outer south-west field have ages ~3 Gyr. The galaxies have a metallicity range -1.0 < [Fe/H] < 0.0, and follow the same age-metallicity-mass plane as high-mass galaxies, but with increased intrinsic scatter. The Mg/Fe abundance ratios are on average slightly super-solar, and span a range -0.1 < [Mg/Fe] < +0.4. The highest Mg enhancements are found only in the cluster core, while solar ratios predominate in the outskirts. Depending on the assumed star-formation history (quenched versus burst-dominated), the number of dwarf galaxies on the red sequence in the Coma core has doubled since z~0.4-0.7. These estimates bracket the red-sequence growth timescales found by direct studies of distant clusters. In the south-west field, the red sequence was established only at z~0.1-0.2. Our observations confirm previous indications of very recently quenched star formation in this part of the cluster. Our results support the picture in which much of the cluster passive dwarf population was generated by environment-driven transformation of infalling late-type galaxies.
In this paper we analyse the evolutionary status and properties of the old open cluster NGC 2355, located in the Galactic anticentre direction, as a part of the long term programme BOCCE. NGC 2355 was observed with LBC@LBT using the Bessel $B$, $V$, and $I_c$ filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, as done in other papers of this series. Additional spectroscopic observations with FIES@NOT of three giant stars were used to determine the chemical properties of the cluster. Our analysis shows that NGC 2355 has metallicity slightly less than solar, with [Fe/H]$=-0.06$ dex, age between 0.8 and 1 Gyr, reddening $E(B-V)$ in the range 0.14 and 0.19 mag, and distance modulus $(m-M)_0$ of about 11 mag. We also investigated the abundances of O, Na, Al, $alpha$, iron-peak, and neutron capture elements, showing that NGC 2355 falls within the abundance distribution of similar clusters (same age and metallicity). The Galactocentric distance of NGC~2355 places it at the border between two regimes of metallicity distribution; this makes it an important cluster for the study of the chemical properties and evolution of the disc.
The stellar content of the intracluster light (ICL) provides unique insight into the hierarchical assembly process of galaxy clusters.However, the ICL is difficult to study due to its low surface brightness and large physical extent. We present optical spectra of three ICL regions in the Coma cluster, located between 100-180kpc from their nearest BCGs: NGC4889 and NGC4874. The mean surface brightness of the three ICL regions are {mu}$_g$~25.3-26.2mag arcsec$^{-2}$. IFU spectroscopy with 13.5 hr on-source integration time were acquired as part of an ancillary program within the SDSS-IV MaNGA survey. We stacked the 127 individual fiber spectra in each IFU in order to achieve a 1{sigma} limiting surface brightness of 27.9mag arcsec$^{-2}$, corresponding to a mean S/N in the optical of 21.6,9.6,and 11.6AA$^{-1}$. We apply stellar population models to the stacked spectra, and measure the recession velocities, velocity dispersions ($sigma$), stellar ages, and [Fe/H]. Our results show that the $sigma$ of ICL regions are very high, indicating the stars are tracing the gravitational potential of the cluster, instead of any individual galaxy. The line-of-sight velocities of the three ICL regions are different from each other by ~700km/s, while the velocity of each region is similar to the closest BCG. This suggests that the ICL regions are associated with two distinct subclusters centered on NGC4889 and NGC4874.The stellar populations of these regions are old and metal poor, with ages of 7-12Gyr, and [Fe/H] of -0.8 to -0.6 dex. From the derived age and [Fe/H], the build-up of ICL in Coma is likely to be through the accretion of low mass galaxies or the tidal stripping of the outskirts of massive galaxies that have ended their star formation early on, instead of directly from major mergers of massive galaxies.