No Arabic abstract
We have identified a new early T dwarf only 3.6pc from the Sun, as a common proper motion companion (separation 1459AU) to the K5V star Epsilon Indi (HD209100). As such, Epsilon Indi B is one of the highest proper motion sources outside the solar system (~4.7 arcsec/yr), part of one of the twenty nearest stellar systems, and the nearest brown dwarf to the Sun. Optical photometry obtained from the SuperCOSMOS Sky Survey was combined with approximate infrared photometry from the 2MASS Quicklook survey data release, yielding colours for the source typical of early T dwarfs. Follow up infrared spectroscopy using the ESO NTT and SOFI confirmed its spectral type to be T2.5+/-0.5. With Ks=11.2, Epsilon Indi B is 1.7 magnitudes brighter than any previously known T dwarf and 4 magnitudes brighter than the typical object in its class, making it highly amenable to detailed study. Also, as a companion to a bright nearby star, it has a precisely known distance (3.626pc) and relatively well-known age (0.8-2Gyr), allowing us to estimate its luminosity as logL/Lsun=-4.67, its effective temperature as 1260K, and its mass as ~40-60Mjup. Epsilon Indi B represents an important addition to the census of the Solar neighbourhood and, equally importantly, a new benchmark object in our understanding of substellar objects.
The relative roles of metallicity and surface gravity on the near-infrared spectra of late-T brown dwarfs are not yet fully understood, and evolutionary models still need to be calibrated in order to provide accurate estimates of brown dwarf physical parameters from measured spectra. The T-type brown dwarfs Eps Indi Ba and Bb forming the tightly bound binary Eps Indi B, which orbits the K4V star Eps Indi A, are nowadays the only such benchmark T dwarfs for which all important physical parameters such as metallicity, age and mass are (or soon will be) known. We present spatially resolved VLT/NACO images and low resolution spectra of Eps Indi B in the J, H and K near-infrared bands. The spectral types of Eps Indi Ba and Bb are determined by direct comparison of the flux-calibrated JHK spectra with T dwarf standard template spectra and also by NIR spectral indices. Eps Indi Bb is confirmed as a T6 while the spectral type of Eps Indi Ba is T1.5 so somewhat later than the previously reported T1. Constrained values for surface gravity and effective temperature are derived by comparison with model spectra. The evolutionary models predict masses around about 53 M_J for Eps Indi Ba and about 34 M_J for Eps Indi Bb, slightly higher than previously reported values. The suppressed J-band and enhanced K-band flux of Eps Indi Ba indicates that a noticeable cloud layer is still present in a T1.5 dwarf while no clouds are needed to model the spectrum of Eps Indi Bb.
We have carried out high angular resolution near-infrared imaging and low-resolution (R~1000) spectroscopy of the nearest known brown dwarf, Eps Indi B, using the ESO VLT NAOS/CONICA adaptive optics system. We find it to be a close binary (as also noted by Volk et al. 2003) with an angular separation of 0.732 arcsec, corresponding to 2.65AU at the 3.626pc distance of the Eps Indi system. In our discovery paper (Scholz et al. 2003), we concluded that Eps Indi B was a ~50Mjup T2.5 dwarf: our revised finding is that the two system components (Eps Indi Ba and Eps Indi Bb) have spectral types of T1 and T6, respectively, and estimated masses of 47 and 28Mjup, respectively, assuming an age of 1.3Gyr. Errors in the masses are +/-10 and +/-7Mjup, respectively, dominated by the uncertainty in the age determination (0.8-2Gyr range). This uniquely well-characterised T dwarf binary system should prove important in the study of low-mass, cool brown dwarfs. The two components are bright and relatively well-resolved: Eps Indi B is the only T dwarf binary in which spectra have been obtained for both components. They have a well-established distance and age. Finally, their orbital motion can be measured on a fairly short timescale (nominal orbital period 15 yrs), permitting an accurate determination of the true total system mass, helping to calibrate brown dwarf evolutionary models.
HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R~30 observations obtained simultaneously across the $JH$ bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5+/-1 dwarf with effective temperature Teff=$978^{+20}_{-43}$ K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits.
We present preliminary astrometric results for the closest known brown dwarf binary to the Sun: Epsilon Indi Ba, Bb at a distance of 3.626 pc. Via ongoing monitoring of the relative separation of the two brown dwarfs (spectral types T1 and T6) with the VLT NACO near-IR adaptive optics system since June 2004, we obtain a model-independent dynamical total mass for the system of 121 MJup, some 60% larger than the one obtained by McCaughrean et al. (2004), implying that the system may be as old as 5 Gyr. We have also been monitoring the absolute astrometric motions of the system using the VLT FORS2 optical imager since August 2005 to determine the individual masses. We predict a periastron passage in early 2010, by which time the system mass will be constrained to < 1 MJup and we will be able to determine the individual masses accurately in a dynamical, model-independent manner.
A recently observed bump in the cosmic ray (CR) spectrum from 0.3--30 TV is likely caused by a stellar bow shock that reaccelerates emph{preexisting} CRs, which further propagate to the Sun along the magnetic field lines. Along their way, these particles generate an Iroshnikov-Kraichnan (I-K) turbulence that controls their propagation and sustains the bump. {it Ad hoc} fitting of the bump shape requires six adjustable parameters. Our model requires none, merely depending on emph{three physical unknowns that we constrain using the fit.} These are the shock Mach number, $M$, its size, $l_{perp}$, and the distance to it, $zeta_{text{obs}}$. Altogether, they define the bump rigidity $R_{0}$. With $M$$approx$1.5--1.6 and $R_{0}$$approx$4.4 TV, the model fits the data with $approx$$0.08%$ accuracy. The fit critically requires the I-K spectrum predicted by the model and rules out the alternatives. These fits attributes make an accidental agreement highly unlikely. In turn, $R_{0}$ and $M$ derived from the fit impose the distance-size %($zeta_{{rm obs}}$$-$$l_{perp}$) relation on the shock: $zeta_{{rm obs}}$(pc)$sim$$10^{2}sqrt{l_{perp}(text{pc})}$. For sufficiently large bow shocks, $l_{perp}$$=$$10^{-3}$$-$$10^{-2}$ pc, we find the distance of $zeta_{{rm obs}}$$=$3--10 pc. Three promising stars in this range are: Scholzs Star at 6.8 pc, Epsilon Indi at 3.6 pc, and Epsilon Eridani at 3.2 pc. Based on their current positions and velocities, we propose that Epsilon Indi and Epsilon Eridani can produce the observed spectral bump. Moreover, Epsilon Eridanis position is only $sim$$6.7^{circ}$ off of the magnetic field direction in the solar neighborhood, which also changes the CR arrival direction distribution. Given the proximity of these stars, the bump appearance may change in a relatively short time.