Do you want to publish a course? Click here

Direct Spectrum of the Benchmark T dwarf HD 19467 B

174   0   0.0 ( 0 )
 Added by Justin Crepp
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R~30 observations obtained simultaneously across the $JH$ bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5+/-1 dwarf with effective temperature Teff=$978^{+20}_{-43}$ K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits.



rate research

Read More

Constraining substellar evolutionary models (SSEMs) is particularly difficult due to a degeneracy between the mass, age, and luminosity of a brown dwarf. In cases where a brown dwarf is found as a directly imaged companion to a star, as in HD 4747 and HD 19467, the mass, age, and luminosity of the brown dwarf are determined independently, making them ideal objects to use to benchmark SSEMs. Using the Center for High Angular Resolution Astronomy Array, we measured the angular diameters and calculated the radii of the host stars HD 4747 A and HD 19467 A. After fitting their parameters to the Dartmouth Stellar Evolution Database, MESA Isochrones and Stellar Tracks, and Yonsei-Yale isochronal models, we adopt age estimates of $10.74^{+6.75}_{-6.87}$ Gyr for HD 4747 A and $10.06^{+1.16}_{-0.82}$ Gyr for HD 19467 A. Assuming the brown dwarf companions HD 4747 B and HD 19467 B have the same ages as their host stars, we show that many of the SSEMs under-predict bolometric luminosities by $sim$ 0.75 dex for HD 4747 B and $sim 0.5$ dex for HD 19467 B. The discrepancies in luminosity correspond to over-predictions of the masses by $sim$ 12% for HD 4747 B and $sim$ 30% for HD 19467 B. We also show that SSEMs that take into account the effect of clouds reduce the under-prediction of luminosity to $sim 0.6$ dex and the over-prediction of mass to $sim 8%$ for HD 4747 B, an L/T transition object that is cool enough to begin forming clouds. One possible explanation for the remaining discrepancies is missing physics in the models, such as the inclusion of metallicity effects.
The physical properties of brown dwarf companions found to orbit nearby, solar-type stars can be benchmarked against independent measures of their mass, age, chemical composition, and other parameters, offering insights into the evolution of substellar objects. The TRENDS high-contrast imaging survey has recently discovered a (mass/age/metallicity) benchmark brown dwarf orbiting the nearby (d=18.69+/-0.19 pc), G8V/K0V star HD 4747. We have acquired follow-up spectroscopic measurements of HD 4747 B using the Gemini Planet Imager to study its spectral type, effective temperature, surface gravity, and cloud properties. Observations obtained in the H-band and K1-band recover the companion and reveal that it is near the L/T transition (T1+/-2). Fitting atmospheric models to the companion spectrum, we find strong evidence for the presence of clouds. However, spectral models cannot satisfactorily fit the complete data set: while the shape of the spectrum can be well-matched in individual filters, a joint fit across the full passband results in discrepancies that are a consequence of the inherent color of the brown dwarf. We also find a $2sigma$ tension in the companion mass, age, and surface gravity when comparing to evolutionary models. These results highlight the importance of using benchmark objects to study secondary effects such as metallicity, non-equilibrium chemistry, cloud parameters, electron conduction, non-adiabatic cooling, and other subtleties affecting emergent spectra. As a new L/T transition benchmark, HD 4747 B warrants further investigation into the modeling of cloud physics using higher resolution spectroscopy across a broader range of wavelengths, polarimetric observations, and continued Doppler radial velocity and astrometric monitoring.
81 - D. Mesa , V. DOrazi , A. Vigan 2020
The determination of the fundamental properties (mass, separation, age, gravity and atmospheric properties) of brown dwarf companions allows us to infer crucial informations on their formation and evolution mechanisms. Spectroscopy of substellar companions is available to date only for a limited number of objects (and mostly at very low resolution, R<50) because of technical limitations, i.e., contrast and angular resolution. We present medium resolution (R=350), coronagraphic long-slit spectroscopic observations with SPHERE of two substellar companions, HD 1160 B and HD 19467 B. We found that HD 1160 B has a peculiar spectrum that cannot be fitted by spectra in current spectral libraries. A good fit is possible only considering separately the Y+J and the H spectral band. The spectral type is between M5 and M7. We also estimated a T_eff of 2800-2900 K and a log(g) of 3.5-4.0 dex. The low surface gravity seems to favour young age (10-20 Myr) and low mass (~20 M Jup ) for this object. HD 19467 B is instead a fully evolved object with a T_eff of ~1000 K and log g of ~5.0 dex. Its spectral type is T6+/-1.
The nearby Sun-like star HD 19467 shows a subtle radial velocity (RV) acceleration of -1.37+/-0.09 m/s/yr over an 16.9 year time baseline (an RV trend), hinting at the existence of a distant orbiting companion. We have obtained high-contrast adaptive optics images of the star using NIRC2 at Keck Observatory and report the direct detection of the body that causes the acceleration. The companion, HD 19467 B, is dK=12.57+/-0.09 mag fainter than its parent star (contrast ratio of 9.4e-6), has blue colors J-K_s=-0.36+/-0.14 (J-H=-0.29+/-0.15), and is separated by 1.653+/-0.004 (51.1+/-1.0 AU). Follow-up astrometric measurements obtained over an 1.1 year time baseline demonstrate physical association through common parallactic and proper motion. We calculate a firm lower-limit of m>51.9^{+3.6}_{-4.3}Mjup for the companion mass from orbital dynamics using a combination of Doppler observations and imaging. We estimate a model-dependent mass of m=56.7^{+4.6}_{-7.2}Mjup from a gyrochronological age of 4.3^{+1.0}_{-1.2} Gyr. Isochronal analysis suggests a much older age of $9pm1$ Gyr, which corresponds to a mass of m=67.4^{+0.9}_{-1.5}Mjup. HD 19467 Bs measured colors and absolute magnitude are consistent with a late T-dwarf [~T5-T7]. We may infer a low metallicity of [Fe/H]=-0.15+/-0.04 for the companion from its G3V parent star. HD 19467 B is the first directly imaged benchmark T-dwarf found orbiting a Sun-like star with a measured RV acceleration.
Context. Detecting and characterizing substellar companions for which the luminosity, mass, and age can be determined independently is of utter importance to test and calibrate the evolutionary models due to uncertainties in their formation mechanisms. HD 19467 is a bright and nearby star hosting a cool brown dwarf companion detected with RV and imaging, making it a valuable object for such studies. Aims. We aim to further characterize the orbital, spectral, and physical properties of the HD 19467 system. Methods. We present new high-contrast imaging data with the SPHERE and NaCo instruments. We also analyze archival data from HARPS, NaCo, HIRES, UVES, and ASAS. We also use proper motion data of the star from Hipparcos and Gaia. Results. We refine the properties of the host star and derive an age of 8.0$^{+2.0}_{-1.0}$ Gyr based on isochrones, gyrochronology, and chemical and kinematic arguments. This estimate is slightly younger than previous estimates of ~9-11 Gyr. No orbital curvature is seen in the current imaging, RV, and astrometric data. From a joint fit of the data, we refine the orbital parameters for HD 19467B: period 398$^{+95}_{-93}$ yr, inclination 129.8$^{+8.1}_{-5.1}$ deg, eccentricity 0.56$pm$0.09, longitude of the ascending node 134.8$pm$4.5 deg, and argument of the periastron 64.2$^{+5.5}_{-6.3}$ deg. We assess a dynamical mass of 74$^{+12}_{-9}$ MJ. The fit with atmospheric models of the spectrophotometric data of HD 19467B indicates an atmosphere without clouds or with very thin clouds, an effective temperature of 1042$^{+77}_{-71}$ K, and a large surface gravity of 5.34$^{+0.08}_{-0.09}$ dex. The comparison to model predictions of the bolometric luminosity and dynamical mass of HD 19467B, assuming our system age estimate, indicates a better agreement with the Burrows et al. models; whereas the other evolutionary models used tend to underestimate its cooling rate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا