Do you want to publish a course? Click here

Is a minor-merger driving the nuclear activity in the Seyfert 2 galaxy NGC 2110?

74   0   0.0 ( 0 )
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a detailed morphological and kinematic study of the isolated non-barred nearby Seyfert 2 galaxy NGC 2110. We combine Integral Field optical spectroscopy, with long-slit and WFPC2 imaging available in the HST archive to investigate the fueling mechanism in this galaxy. Previous work (Wilson & Baldwin 1985) concluded that the kinematic center of the galaxy is displaced ~220 pc from the apparent mass center of the galaxy, and the ionized gas follows a remarkably normal rotation curve. Our analysis based on the stellar kinematics, 2D ionized gas velocity field and dispersion velocity, and high spatial resolution morphology at V, I and Halpha reveals that: 1) The kinematic center of NGC 2110 is at the nucleus of the galaxy. 2) The ionized gas is not in pure rotational motion. 3) The morphology of the 2D distribution of the emission line widths suggests the presence of a minor axis galactic outflow. 4) The nucleus is blue-shifted with respect to the stellar systemic velocity, suggesting the NLR gas is out-flowing due to the interaction with the radio jet. 5) The ionized gas is red-shifted ~100 km/s over the corresponding rotational motion south of the nucleus, and 240 km/s with respect to the nuclear stellar systemic velocity. This velocity is coincident with the HI red-shifted absorption velocity detected by Gallimore et al (1999). We discuss the possibility that the kinematics of the south ionized gas could be perturbed by the collision with a small satellite that impacted on NGC 2110 close to the center with a highly inclined orbit. Additional support for this interpretation are the radial dust lanes and tidal debris detected in the V un-sharp masked image. We suggest that a minor-merger may have driven the nuclear activity in NGC 2110.



rate research

Read More

The AGN NGC 2110 presents a peculiar case among the Seyfert 2 galaxies, as it displays also features of radio-loud objects and is classified as FR-I radio galaxy. Here we analyse simultaneous INTEGRAL and Swift data taken in 2008 and 2009. We reconstruct the spectral energy distribution in order to provide further insight. The combined X-ray spectrum is well represented by an absorbed cut-off power law model plus soft excess. Combining all available data, the spectrum appears flat (photon index 1.25 +- 0.04) with the high-energy cut-off being at 82 +- 9 keV. The intrinsic absorption is moderate (NH = 4E22 1/cm**2), the iron K-alpha line is weak (EW = 114 eV), and no reflection component is detected in the INTEGRAL spectrum. The data indicate that the X-ray spectrum is moderately variable both in flux and spectral shape. The 2008 spectrum is slightly steeper (photon index 1.5, Ec = 90 keV) with the source being brighter, and flatter in 2009 (photon index 1.4, Ec = 120 keV) in the lower flux state. The spectral energy distribution gives a bolometric luminosity of L = 2E44 erg/sec. NGC 2110 appears to be a borderline object between radio loud narrow line Seyfert 1 and radio quiet Seyfert 2. Its spectral energy distribution might indeed be dominated by non-thermal emission arising from the jet.
63 - G.Malaguti , L.Bassani , M.Cappi 1999
The Seyfert 2 galaxy NGC 2110 has been observed with BeppoSAX between 0.5 and 150 keV. The high energy instrument onboard, PDS, has succeeded in measuring for the first time the spectrum of this source in the 13-150 keV range. The PDS spectrum, having a photon index Gamma~1.86 is fully compatible with that expected from a Seyfert 1 nucleus. In the framework of unified models, the harder (Gamma~1.67) 2-10 keV spectrum is well explained assuming the presence of a complex partial + total absorber (Nh~30x10^22 cm^-2 x25% + Nh~4x10^22 cm^-2 x100%). The high column density of this complex absorber is consistent both with the FeK_alpha line strength and with the detection of an absorption edge at E~7.1 keV in the power-law spectrum.
141 - Ichi Tanaka , Masafumi Yagi , 2017
Deep optical imaging with both Hyper Suprime-Cam and Suprime-Cam on the 8.2 m Subaru Telescope reveals a number of outer faint structures around the archetypical Seyfert galaxy NGC 1068 (M 77). We find three ultra diffuse objects (UDOs) around NGC 1068. Since these UDOs are located within the projected distance of 45 kpc from the center of NGC 1068, they appear to be associated with NGC 1068. Hereafter, we call them UDO-SW, UDO-NE, and UDO-SE where UDO = Ultra Diffuse Object, SW = south west, NE = north west, and SE = south east; note that UDO-SE was already found in the SDSS Stripe 82 data. Among them, both UDO-NE and UDO-SW appear to show a loop or stream structure around the main body of NGC 1068, providing evidence for the physical connection to NGC 1068. We consider that UDO-SE may be a tidal dwarf galaxy. We also find another UDO-like object that is 2 magnitudes fainter and smaller by a factor of 3 to 5 than those of the three UDOs. This object may belong to a class of low surface brightness galaxy. Since this object is located along the line connecting UDO-NE and UDO-SW, it is suggested that this object is related to the past interaction event that formed the loop by UDO-NE and UDO-SW, thus implying the physical connection to NGC 1068. Another newly-discovered feature is an asymmetric outer one-arm structure emanated from the western edge of the outermost disk of NGC 1068 together with a ripple-like structure at the opposite side. These structures are expected to arise in a late phase of a minor merger according to published numerical simulations of minor mergers. All these lines of evidence show that NGC 1068 experienced a minor merger several billions years ago. We then discuss the minor-merger driven triggering of nuclear activity in the case of NGC 1068.
We present the discovery of a triplet of emission-line nuclei in the disturbed disk galaxy NGC 3341, based on archival data from the Sloan Digital Sky Survey and new observations from the Keck Observatory. This galaxy contains two offset nuclei within or projected against its disk, at projected distances of 5.1 and 8.4 kpc from its primary nucleus and at radial velocity separation of less than 200 km/s from the primary. These appear to be either dwarf ellipticals or the bulges of low-mass spirals whose disks have already been stripped off while merging into the primary galaxy. The inner offset nucleus has a Seyfert 2 spectrum and a stellar velocity dispersion of 70+/-7 km/s. The outer offset nucleus has very weak emission lines consistent with a LINER classification, and the primary nucleus has an emission-line spectrum close to the boundary between LINER/HII composite systems and HII nuclei; both may contain accreting massive black holes, but the optical classifications alone are ambiguous. The detection of an offset active nucleus in NGC 3341 provides a strong suggestion that black hole accretion episodes during minor mergers can be triggered in the nuclei of dwarf secondary galaxies as well as in the primary.
We report far-infrared (FIR) imaging of the Seyfert 2 galaxy NGC 3081 in the range 70-500 micron, obtained with an unprecedented angular resolution, using the Herschel Space Observatory instruments PACS and SPIRE. The 11 kpc (~70 arcsec) diameter star-forming ring of the galaxy appears resolved up to 250 micron. We extracted infrared (1.6-500 micron) nuclear fluxes, that is active nucleus-dominated fluxes, and fitted them with clumpy torus models, which successfully reproduce the FIR emission with small torus sizes. Adding the FIR data to the near- and mid-infrared spectral energy distribution (SED) results in a torus radial extent of Ro=4(+2/-1) pc, as well as in a flat radial distribution of the clouds (i.e. the q parameter). At wavelengths beyond 200 micron, cold dust emission at T=28+/-1 K from the circumnuclear star-forming ring of 2.3 kpc (~15 arcsec) in diameter starts making a contribution to the nuclear emission. The dust in the outer parts of the galaxy is heated by the interstellar radiation field (19+/-3 K).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا