Do you want to publish a course? Click here

Submillimeter Dust Continuum Studies of Low and High Mass Star Formation

47   0   0.0 ( 0 )
 Added by Yancy L. Shirley
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

Studying the physical environments of low mass and high mass cores using dust continuum emission provides important observational constraints on theoretical models of star formation. The motivation and procedure for modeling dust continuum emission is reviewed and the results of recent surveys towards low mass and high mass star forming regions are compared.



rate research

Read More

83 - Jonathan C. Tan 2015
I review theoretical models of star formation and how they apply across the stellar mass spectrum. Several distinct theories are under active study for massive star formation, especially Turbulent Core Accretion, Competitive Accretion and Protostellar Mergers, leading to distinct observational predictions. These include the types of initial conditions, the structure of infall envelopes, disks and outflows, and the relation of massive star formation to star cluster formation. Even for Core Accretion models, there are several major uncertainties related to the timescale of collapse, the relative importance of different processes for preventing fragmentation in massive cores, and the nature of disks and outflows. I end by discussing some recent observational results that are helping to improve our understanding of these processes.
Massive star formation occurs in the interior of giant molecular clouds (GMC) and proceeds through many stages. In this work, we focus on massive young stellar objects (MYSOs) and Ultra-Compact HII regions (UCHII), where the former are enshrouded in dense envelopes of dust and gas, which the latter have begun dispersing. By selecting a complete sample of MYSOs and UCHII from the Red MSX Source (RMS) survey data base, we combine Planck and IRAS data and build their Spectral Energy Distributions (SEDs). With these, we estimate the physical properties (dust temperatures, mass, luminosity) of the sample. Because the RMS database provides unique solar distances, it also allows investigating the instantaneous Star Formation Efficiency (SFE) as a function of Galactocentric radius. We find that the SFE increase between 2 and 4.5 kpc, where it reaches a peak, likely in correspondence of the accumulation of molecular material at the end of the Galactic bar. It then stays approximately constant up to 9 kpc, after which it linearly declines, in agreement with predictions from extragalactic studies. This behavior suggests the presence of a significant amount of undetected molecular gas at R$_G$ $>$ 8 kpc. Finally we present diagnostic colors that can be used to identify sites of massive star formation.
Star formation is a multi-scale, multi-physics problem ranging from the size scale of molecular clouds ($sim$10s pc) down to the size scales of dense prestellar cores ($sim$0.1 pc) that are the birth sites of stars. Several physical processes like turbulence, magnetic fields and stellar feedback, such as radiation pressure and outflows, are more or less important for different stellar masses and size scales. During the last decade a variety of technological and computing advances have transformed our understanding of star formation through the use of multi-wavelength observations, large scale observational surveys, and multi-physics multi-dimensional numerical simulations. Additionally, the use of synthetic observations of simulations have provided a useful tool to interpret observational data and evaluate the importance of various physical processes on different scales in star formation. Here, we review these recent advancements in both high- ($M gtrsim 8 , M_{rm odot}$) and low-mass star formation.
Context. Transition disks (TDs) are circumstellar disks with inner regions highly depleted in dust. TDs are observed in a small fraction of disk-bearing objects at ages of 1-10 Myr. They are important laboratories to study evolutionary effects in disks, from photoevaporation to planet-disk interactions. Aims. We report the discovery of a large inner dust-empty region in the disk around the very low mass star CIDA 1 (M$_{star} sim 0.1-0.2$ M$_{odot}$). Methods. We used ALMA continuum observations at 887$mu$m, which provide a spatial resolution of $0.21times0.12$ ($sim$15$times$8 au in radius at 140 pc). Results. The data show a dusty ring with a clear cavity of radius $sim$20 au, the typical characteristic of a TD. The emission in the ring is well described by a narrow Gaussian profile. The dust mass in the disk is $sim$17 M$_{oplus}$. CIDA 1 is one of the lowest mass stars with a clearly detected millimeter cavity. When compared to objects of similar stellar mass, it has a relatively massive dusty disk (less than $sim5$% of Taurus Class II disks in Taurus have a ratio of $M_{rm{disk}}/M_{star}$ larger than CIDA 1) and a very high mass accretion rate (CIDA 1 is a disk with one of the lowest values of $M_{rm{disk}}/dot M$ ever observed). In light of these unusual parameters, we discuss a number of possible mechanisms that can be responsible for the formation of the dust cavity (e.g., photoevaporation, dead zones, embedded planets, close binary). We find that an embedded planet of a Saturn mass or a close binary are the most likely possibilities.
149 - Neal J. Evans II 2010
I briefly review recent observations of regions forming low mass stars. The discussion is cast in the form of seven questions that have been partially answered, or at least illuminated, by new data. These are the following: where do stars form in molecular clouds; what determines the IMF; how long do the steps of the process take; how efficient is star formation; do any theories explain the data; how are the star and disk built over time; and what chemical changes accompany star and planet formation. I close with a summary and list of open questions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا