No Arabic abstract
We observed the Galactic black hole Cygnus X-1 with the Chandra High Energy Transmission Grating Spectrometer for 30 kiloseconds on 4 January, 2001. The source was in an intermediate state, with a flux that was approximately twice that commonly observed in its persistent low/hard state. Our best-fit model for the X-ray spectrum includes narrow Gaussian emission line (E = 6.415 +/- 0.007 keV, FWHM = 80 (+28, -19) eV, W = 16 (+3, -2) eV) and broad line (E = 5.82 (+0.06, -0.07) keV, FWHM = 1.9 (+0.5, -0.3) keV, W = 140 (+70, -40) eV) components, and a smeared edge at 7.3 +/- 0.2 keV (tau ~ 1.0). The broad line profile is not as strongly skewed as those observed in some Seyfert galaxies. We interpret these features in terms of an accretion disk with irradiation of the inner disk producing a broad Fe K-alpha emission line and edge, and irradiation of the outer disk producing a narrow Fe K-alpha emission line. The broad line is likely shaped predominantly by Doppler shifts and gravitational effects, and to a lesser degree by Compton scattering due to reflection. We discuss the underlying continuum X-ray spectrum and these line features in the context of diagnosing the accretion flow geometry in Cygnus X-1 and other Galactic black holes.
Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the INTEGRAL/IBIS telescope. Spectral modeling of the data reveals two emission mechanisms: The 250-400 keV data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.
Observations of the fluorescent Fe K-alpha emission line from the inner accretion flows of stellar mass black holes in X-ray binaries and supermassive black holes in Active Galactic Nuclei have become an important tool to study the magnitude and inclination of the black hole spin, and the structure of the accretion flow close to the event horizon of the black hole. Modeling spectral, timing, and soon also X-ray polarimetric observations of the Fe K-alpha emission requires to calculate the specific intensity in the rest frame of the emitting plasma. We revisit the derivation of the equation used for calculating the illumination of the accretion disk by the corona. We present an alternative derivation leading to a simpler equation, and discuss the relation to the previously published results.
We present observations of a transient He-like Fe K alpha absorption line in Suzaku observations of the black hole binary Cygnus X-1 on 2011 October 5 near superior conjunction during the high/soft state, which enable us to map the full evolution from the start and the end of the episodic accretion phenomena or dips for the first time. We model the X-ray spectra during the event and trace their evolution. The absorption line is rather weak in the first half of the observation, but instantly deepens for ~10 ks, and weakens thereafter. The overall change in equivalent width is a factor of ~3, peaking at an orbital phase of ~0.08. This is evidence that the companion stellar wind feeding the black hole is clumpy. By analyzing the line with a Voigt profile, it is found to be consistent with a slightly redshifted Fe XXV transition, or possibly a mixture of several species less ionized than Fe XXV. The data may be explained by a clump located at a distance of ~10^(10-12) cm with a density of ~10^((-13)-(-11)) g cm^-3, which accretes onto and/or transits the line-of-sight to the black hole, causing an instant decrease in the observed degree of the ionization and/or an increase in density of the accreting matter. Continued monitoring for individual events with future X-ray calorimeter missions such as ASTRO-H and AXSIO will allow us to map out the accretion environment in detail and how it changes between the various accretion states.
The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations. We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black holes accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk. Assuming that the spin axis of the black hole is aligned with the orbital angular momentum vector, we have determined that Cygnus X-1 contains a near-extreme Kerr black hole with a spin parameter a/M>0.95 (3sigma). For a less probable (synchronous) dynamical model, we find a/M>0.92 (3sigma). In our analysis, we include the uncertainties in black hole mass, orbital inclination angle and distance, and we also include the uncertainty in the calibration of the absolute flux via the Crab. These four sources of uncertainty totally dominate the error budget. The uncertainties introduced by the thin-disk model we employ are particularly small in this case given the extreme spin of the black hole and the disks low luminosity.
In X-ray binaries, the frequencies revealed in X-ray quasi-periodic oscillations (QPOs) are often interpreted as characteristic frequencies in the inner accretion disk, though the exact oscillation mechanism is unknown at present. Broadened Fe K-alpha lines are also excellent diagnostics of the inner accretion flow, if their broadening is indeed due to inner disk reflection. Herein, we present two cases where the flux and equivalent width of the Fe K-alpha emission lines in spectra of the Galactic black hole GRS 1915+105 vary with the phase of strong 1 Hz and 2 Hz QPOs in the X-ray flux. These results provide strong evidence that both QPOs and the Fe-alpha lines originate in the inner disk. If the 1 Hz QPO is only a Keplerian orbital frequency, the QPO comes from a distance of 84 +/- 26 R_Schw from the black hole; the 2 Hz QPO implies a radius of 50 +/- 15 R_Schw. At these radii, relativistic shaping of a disk line is inevitable. Moreover, the link holds in radio-bright and radio-faint phases, signaling that in systems like GRS 1915+105, the Fe K-alpha line is a disk line and not a jet line as per SS 433. A particularly interesting possibility is that a stable warp in the inner disk, e.g. due to Lense-Thirring precession, may produce the observed QPOs and line modulations. More broadly, the FeK-QPO link provides an unprecedented mechanism for revealing the inner accretion flow and relativistic regime in accreting systems, in that it gives two measures of radius: for a given disk QPO model, the frequency translates into a specific radius, and relativistic line models yield radii directly.