Do you want to publish a course? Click here

On the Calculation of the Fe K-alpha Line Emissivity of Black Hole Accretion Disks

91   0   0.0 ( 0 )
 Added by Henric Krawczynski
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of the fluorescent Fe K-alpha emission line from the inner accretion flows of stellar mass black holes in X-ray binaries and supermassive black holes in Active Galactic Nuclei have become an important tool to study the magnitude and inclination of the black hole spin, and the structure of the accretion flow close to the event horizon of the black hole. Modeling spectral, timing, and soon also X-ray polarimetric observations of the Fe K-alpha emission requires to calculate the specific intensity in the rest frame of the emitting plasma. We revisit the derivation of the equation used for calculating the illumination of the accretion disk by the corona. We present an alternative derivation leading to a simpler equation, and discuss the relation to the previously published results.



rate research

Read More

The broad iron K$alpha$ emission line, commonly seen in the X-ray spectrum of Seyfert nuclei, is thought to originate when the inner accretion disk is illuminated by an active disk-corona. We show that relative motion between the disk and the X-ray emitting material can have an important influence on the observed equivalent width (EW) of this line via special relativistic aberration and Doppler effects. We suggest this may be relevant to understanding why the observed EW often exceeds the prediction of the standard X-ray reflection model. Several observational tests are suggested that could disentangle these special relativistic effects from iron abundance effects.
We study the radial ionization structure at the surface of an X-ray illuminated accretion disk. We plot the expected iron K$alpha$ line energy as a function of the Eddington ratio and of the distance of the emitting matter from the central source, for a non-rotating and a maximally-rotating black hole. We compare the predicted disk line energies with those measured in an archival sample of active galactic nuclei observed with {it Chandra}, {it XMM-Newton} and {it Suzaku}, and discuss whether the line energies are consistent with the radial distances inferred from reverberation studies. We also suggest using rapidly-variable iron K$alpha$ lines to estimate the viscosity parameter of an accretion disk. There is a forbidden region in the line energy versus Eddington ratio plane, at low Eddington ratios, where an accretion disk cannot produce highly-ionized iron K$alpha$ lines. If such emission is observed in low-Eddington-ratio sources, it is either coming from a highly-ionized outflow, or is a blue-shifted component from fast-moving neutral matter.
204 - Agnieszka Janiuk 2012
We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.
The exact time-dependent solution is obtained for a magnetic field growth during a spherically symmetric accretion into a black hole (BH) with a Schwarzschild metric. Magnetic field is increasing with time, changing from the initially uniform into a quasi-radial field. Equipartition between magnetic and kinetic energies in the falling gas is established in the developed stages of the flow. Estimates of the synchrotron radiation intensity are presented for the stationary flow. The main part of the radiation is formed in the region $r leq 7 r_g$, here $r_g$ is a BH gravitational radius. The two-dimensional stationary self-similar magnetohydrodynamic solution is obtained for the matter accretion into BH, in a presence of a large-scale magnetic field, when the magnetic field far from the BH is homogeneous and does not influence the flow. At the symmetry plane perpendicular to the direction of the distant magnetic field, the quasi-stationary disk is formed around BH, which structure is determined by dissipation processes. Parameters of the shock forming due to matter infall onto the disk are obtained. The radiation spectrum of the disk and the shock are obtained for the $10,, M_odot$ BH. The luminosity of such object is about the solar one, for a characteristic galactic gas density, with possibility of observation at distances less than 1 kpc. The spectra of a laminar and a turbulent disk structure around BH are very different. The turbulent disk emits a large part of its flux in the infrared. It may occur that some of the galactic infrared star-like sources are a single BH in the turbulent accretion state. The radiative efficiency of the magnetized disk is very high, reaching $sim 0.5,dot M,c^2$ so it was called recently as a magnetically arrested disk (MAD). Numerical simulations of MAD, and its appearance during accretion into neutron stars are considered and discussed.
Several active galactic nuclei and microquasars are observed to eject plasmoids that move at relativistic speeds. We envisage the plasmoids as pre-existing current carrying magnetic flux ropes that were initially anchored in the accretion disk-corona. The plasmoids are ejected outwards via a mechanism called the toroidal instability (TI). The TI, which was originally explored in the context of laboratory tokamak plasmas, has been very successful in explaining coronal mass ejections from the Sun. Our model predictions for plasmoid trajectories compare favorably with a representative set of multi-epoch observations of radio emitting knots from the radio galaxy 3C120, which were preceded by dips in Xray intensity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا