Do you want to publish a course? Click here

HST Imaging in the Chandra Deep Field South: II. WFPC2 Observations of an X-Ray Flux-Limited Sample from the 1 Msec Chandra Catalog

95   0   0.0 ( 0 )
 Added by Anton Koekemoer
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present HST/WFPC2 observations of a well-defined sample of 40 X-ray sources with X-ray fluxes above the detection threshold of the full 1 Msec Chandra Deep Field South (CDFS). The sensitivity and spatial resolution of our HST observations are sufficient to detect the optical counterparts of 37 of the X-ray sources, yielding information on their morphologies and environments. In this paper we extend the results obtained in our previous study on the 300 ks CDFS X-ray data (Schreier et al. 2001, Paper I). Specifically, we show that the optical counterparts to the X-ray sources are divided into two distinct populations: 1) an optically faint group with relatively blue colors, similar to the faint blue field galaxy population, and 2) an optically brighter group, including resolved galaxies with average colors significantly redder than the corresponding bright field galaxy population. The brighter objects comprise a wide range of types, including early and late type galaxies, starbursts, and AGN. By contrast, we show that the faint blue X-ray population are most consistent with being predominantly Type 2 AGN of low to moderate luminosity, located at higher redshifts (z ~ 1 - 2). This conclusion is supported by luminosity function models of the various classes of objects. Hence, the combination of deep X-ray data with the high spatial resolution of HST are for the first time allowing us to probe the faint end of the AGN luminosity function at cosmologically interesting redshifts.



rate research

Read More

173 - R. Giacconi , A. Zirm , J. Wang 2001
In this Paper we present the source catalog obtained from a 942 ks exposure of the Chandra Deep Field South (CDFS), using ACIS-I on the Chandra X-ray Observatory. Catalog generation proceeded simultaneously using two different methods; a method of our own design using a modified version of the SExtractor algorithm, and a wavelet transform technique developed specifically for Chandra observations. The detection threshold has been set in order to have less than 10 spurious sources, as assessed by extensive simulations. We subdivided the catalog into four sections. The primary list consists of objects common to the two detection methods. Two secondary lists contain sources which were detected by: 1) the SExtractor algorithm alone and 2) the wavelet technique alone. The fourth list consists of possible diffuse or extended sources. The flux limits at the aimpoint for the soft (0.5--2 keV) and hard (2--10 keV) bands are 5.5E-17 erg/s/cm^2 and 4.5E-16 erg/s/cm^2 respectively. The total number of sources is 346; out of them, 307 were detected in the 0.5--2 keV band, and 251 in the 2--10 keV band. We also present optical identifications for the catalogued sources. Our primary optical data is R band imaging to a depth of R~26.5 (Vega). We found that the R-band/Chandra offsets are small, ~1 arcsec. Coordinate cross-correlation finds 85% of the Chandra sources covered in R to have counterparts within the 3-sigma error box (>~1.5 arcsec depending on off-axis angle and signal-to-noise). The unidentified fraction of sources, approximately ~10--15 %, is close to the limit expected from the observed X-ray flux to R-band ratio distribution for the identified sample.
Ultra-deep observations of ECDF-S with Chandra and XMM-Newton enable a search for extended X-ray emission down to an unprecedented flux of $2times10^{-16}$ ergs s$^{-1}$ cm$^{-2}$. We present the search for the extended emission on spatial scales of 32$^{primeprime}$ in both Chandra and XMM data, covering 0.3 square degrees and model the extended emission on scales of arcminutes. We present a catalog of 46 spectroscopically identified groups, reaching a redshift of 1.6. We show that the statistical properties of ECDF-S, such as logN-logS and X-ray luminosity function are broadly consistent with LCDM, with the exception that dn/dz/d$Omega$ test reveals that a redshift range of $0.2<z<0.5$ in ECDF-S is sparsely populated. The lack of nearby structure, however, makes studies of high-redshift groups particularly easier both in X-rays and lensing, due to a lower level of clustered foreground. We present one and two point statistics of the galaxy groups as well as weak-lensing analysis to show that the detected low-luminosity systems are indeed low-mass systems. We verify the applicability of the scaling relations between the X-ray luminosity and the total mass of the group, derived for the COSMOS survey to lower masses and higher redshifts probed by ECDF-S by means of stacked weak lensing and clustering analysis, constraining any possible departures to be within 30% in mass. Abridged.
70 - Shanil Virani 2005
The Extended Chandra Deep Field-South (ECDFS) survey consists of 4 Chandra ACIS-I pointings and covers $approx$ 1100 square arcminutes ($approx$ 0.3 deg$^2$) centered on the original CDF-S field to a depth of approximately 228 ks. This is the largest Chandra survey ever conducted at such depth, and only one XMM-Newton survey reaches a lower flux limit in the hard 2.0--8.0 keV band. We detect 651 unique sources -- 587 using a conservative source detection threshold and 64 using a lower source detection threshold. These are presented as two separate catalogs. Of the 651 total sources, 561 are detected in the full 0.5--8.0 keV band, 529 in the soft 0.5--2.0 keV band, and 335 in the hard 2.0--8.0 keV band. For point sources near the aim point, the limiting fluxes are approximately $1.7 times 10^{-16}$ $rm{erg cm^{-2} s^{-1}}$ and $3.9 times 10^{-16}$ $rm{erg cm^{-2} s^{-1}}$ in the 0.5--2.0 keV and 2.0--8.0 keV bands, respectively. Using simulations, we determine the catalog completeness as a function of flux and assess uncertainties in the derived fluxes due to incomplete spectral information. We present the differential and cumulative flux distributions, which are in good agreement with the number counts from previous deep X-ray surveys and with the predictions from an AGN population synthesis model that can explain the X-ray background. In general, fainter sources have harder X-ray spectra, consistent with the hypothesis that these sources are mainly obscured AGN.
388 - E. J. Schreier 2001
We present preliminary results from imaging three HST/WFPC2 fields in V and I within the Chandra Deep Field South (CDFS). HSTs sensitivity and resolution are sufficient to reveal optical counterparts for 24 of the 26 CDFS X-ray sources detected in the 300 ksec X-ray catalog and to determine the morphologies of most of these. We find that the X-ray sources comprise two apparently distinct populations of optical candidates: one optically faint (I > 24) with V - I colors consistent with the I > 24 field population; the other significantly brighter (I < 22) with colors redder than the I < 22 field population. More than 2/3 of the X-ray source counterparts are resolved galaxies. The brighter sources are mostly AGN, based on their high X-ray luminosity. The optically resolved sources in the brighter population have a very narrow range of V - I color and appear to be a mix of both late and early type morphologies at low to moderate redshift. We show that the second population, with fainter optical counterparts, can be explained as higher redshift Type 2 AGN.
We studied the X-ray variability of sources detected in the Chandra Deep Field South (Giacconi et al. 2002), nearly all of which are low to moderate z AGN (Tozzi et al. 2001). We find that 45% of the sources with >100 counts exhibit significant variability on timescales ranging from a day up to a year. The fraction of sources found to be variable increases with observed flux, suggesting that >90% of all AGNs possess intrinsic variability. We also find that the fraction of variable sources appears to decrease with increasing intrinsic absorption; a lack of variability in hard, absorbed AGNs could be due to an increased contribution of reflected X-rays to the total flux. We do not detect significant spectral variability in the majority (~70%) of our sources. In half of the remaining 30%, the hardness ratio is anti-correlated with flux, mimicking the high/soft-low/hard states of galactic sources. The X-ray variability appears anti-correlated with the luminosity of the sources, in agreement with previous studies. High redshift sources, however, have larger variability amplitudes than expected from extrapolations of their low-z counterparts, suggesting a possible evolution in the accretion rate and/or size of the X-ray emitting region. Finally, we discuss some effects that may produce the observed decrease in the fraction of variable sources from z=0.5 out to z=2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا