Do you want to publish a course? Click here

Prevalence of X-ray variability in the Chandra Deep Field South

57   0   0.0 ( 0 )
 Added by Maurizio Paolillo
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We studied the X-ray variability of sources detected in the Chandra Deep Field South (Giacconi et al. 2002), nearly all of which are low to moderate z AGN (Tozzi et al. 2001). We find that 45% of the sources with >100 counts exhibit significant variability on timescales ranging from a day up to a year. The fraction of sources found to be variable increases with observed flux, suggesting that >90% of all AGNs possess intrinsic variability. We also find that the fraction of variable sources appears to decrease with increasing intrinsic absorption; a lack of variability in hard, absorbed AGNs could be due to an increased contribution of reflected X-rays to the total flux. We do not detect significant spectral variability in the majority (~70%) of our sources. In half of the remaining 30%, the hardness ratio is anti-correlated with flux, mimicking the high/soft-low/hard states of galactic sources. The X-ray variability appears anti-correlated with the luminosity of the sources, in agreement with previous studies. High redshift sources, however, have larger variability amplitudes than expected from extrapolations of their low-z counterparts, suggesting a possible evolution in the accretion rate and/or size of the X-ray emitting region. Finally, we discuss some effects that may produce the observed decrease in the fraction of variable sources from z=0.5 out to z=2.



rate research

Read More

We systematically analyze X-ray variability of active galactic nuclei (AGNs) in the 7~Ms textit{Chandra} Deep Field-South survey. On the longest timescale ($approx~17$ years), we find only weak (if any) dependence of X-ray variability amplitudes on energy bands or obscuration. We use four different power spectral density (PSD) models to fit the anti-correlation between normalized excess variance ($sigma^2_{rm nxv}$) and luminosity, and obtain a best-fit power law index $beta=1.16^{+0.05}_{-0.05}$ for the low-frequency part of AGN PSD. We also divide the whole light curves into 4 epochs in order to inspect the dependence of $sigma^2_{rm nxv}$ on these timescales, finding an overall increasing trend. The analysis of these shorter light curves also infers a $beta$ of $sim 1.3$ that is consistent with the above-derived $beta$, which is larger than the frequently-assumed value of $beta=1$. We then investigate the evolution of $sigma^2_{rm nxv}$. No definitive conclusion is reached due to limited source statistics but, if present, the observed trend goes in the direction of decreasing AGN variability at fixed luminosity toward large redshifts. We also search for transient events and find 6 notable candidate events with our considered criteria. Two of them may be a new type of fast transient events, one of which is reported here for the first time. We therefore estimate a rate of fast outbursts $langledot{N}rangle = 1.0^{+1.1}_{-0.7}times 10^{-3}~rm galaxy^{-1}~yr^{-1}$ and a tidal disruption event~(TDE) rate $langledot{N}_{rm TDE}rangle=8.6^{+8.5}_{-4.9}times 10^{-5}~rm galaxy^{-1}~yr^{-1}$ assuming the other four long outbursts to be TDEs.
Ultra-deep observations of ECDF-S with Chandra and XMM-Newton enable a search for extended X-ray emission down to an unprecedented flux of $2times10^{-16}$ ergs s$^{-1}$ cm$^{-2}$. We present the search for the extended emission on spatial scales of 32$^{primeprime}$ in both Chandra and XMM data, covering 0.3 square degrees and model the extended emission on scales of arcminutes. We present a catalog of 46 spectroscopically identified groups, reaching a redshift of 1.6. We show that the statistical properties of ECDF-S, such as logN-logS and X-ray luminosity function are broadly consistent with LCDM, with the exception that dn/dz/d$Omega$ test reveals that a redshift range of $0.2<z<0.5$ in ECDF-S is sparsely populated. The lack of nearby structure, however, makes studies of high-redshift groups particularly easier both in X-rays and lensing, due to a lower level of clustered foreground. We present one and two point statistics of the galaxy groups as well as weak-lensing analysis to show that the detected low-luminosity systems are indeed low-mass systems. We verify the applicability of the scaling relations between the X-ray luminosity and the total mass of the group, derived for the COSMOS survey to lower masses and higher redshifts probed by ECDF-S by means of stacked weak lensing and clustering analysis, constraining any possible departures to be within 30% in mass. Abridged.
245 - E. Treister 2008
We present the first results of our optical spectroscopy program aimed to provide redshifts and identifications for the X-ray sources in the Extended Chandra Deep Field South. A total of 339 sources were targeted using the IMACS spectrograph at the Magellan telescopes and the VIMOS spectrograph at the VLT. We measured redshifts for 186 X-ray sources, including archival data and a literature search. We find that the AGN host galaxies have on average redder rest-frame optical colors than non-active galaxies, and that they live mostly in the green valley. The dependence of the fraction of AGN that are obscured on both luminosity and redshift is confirmed at high significance and the observed AGN space density is compared with the expectations from existing luminosity functions. These AGN show a significant difference in the mid-IR to X-ray flux ratio for obscured and unobscured AGN, which can be explained by the effects of dust self-absorption on the former. This difference is larger for lower luminosity sources, which is consistent with the dust opening angle depending on AGN luminosity.
70 - Shanil Virani 2005
The Extended Chandra Deep Field-South (ECDFS) survey consists of 4 Chandra ACIS-I pointings and covers $approx$ 1100 square arcminutes ($approx$ 0.3 deg$^2$) centered on the original CDF-S field to a depth of approximately 228 ks. This is the largest Chandra survey ever conducted at such depth, and only one XMM-Newton survey reaches a lower flux limit in the hard 2.0--8.0 keV band. We detect 651 unique sources -- 587 using a conservative source detection threshold and 64 using a lower source detection threshold. These are presented as two separate catalogs. Of the 651 total sources, 561 are detected in the full 0.5--8.0 keV band, 529 in the soft 0.5--2.0 keV band, and 335 in the hard 2.0--8.0 keV band. For point sources near the aim point, the limiting fluxes are approximately $1.7 times 10^{-16}$ $rm{erg cm^{-2} s^{-1}}$ and $3.9 times 10^{-16}$ $rm{erg cm^{-2} s^{-1}}$ in the 0.5--2.0 keV and 2.0--8.0 keV bands, respectively. Using simulations, we determine the catalog completeness as a function of flux and assess uncertainties in the derived fluxes due to incomplete spectral information. We present the differential and cumulative flux distributions, which are in good agreement with the number counts from previous deep X-ray surveys and with the predictions from an AGN population synthesis model that can explain the X-ray background. In general, fainter sources have harder X-ray spectra, consistent with the hypothesis that these sources are mainly obscured AGN.
109 - V. Mainieri , P. Rosati , P. Tozzi 2005
We provide important new constraints on the nature and redshift distribution of optically faint (R>25) X-ray sources in the Chandra Deep Field South Survey. We show that we can derive accurate photometric redshifts for the spectroscopically unidentified sources thus maximizing the redshift completeness for the whole X-ray sample. Our new redshift distribution for the X-ray source population is in better agreement with that predicted by X-ray background synthesis models; however, we still find an overdensity of low redshift (z<1) sources. The optically faint sources are mainly X-ray absorbed AGN, as determined from direct X-ray spectral analysis and other diagnostics. Many of these optically faint sources have high (>10) X-ray-to-optical flux ratios. We also find that ~71% of them are well fitted with the SED of an early-type galaxy with <z_phot>~1.9 and the remaining 29% with irregular or starburst galaxies mainly at z_phot>3. We estimate that 23% of the optically faint sources are X-ray absorbed QSOs. The overall population of X-ray absorbed QSOs contributes a ~15% fraction of the [2-10] keV X-ray Background (XRB) whereas current XRB synthesis models predict a ~38% contribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا