Do you want to publish a course? Click here

The Distance of the Large Magellanic Cloud Cluster NGC 1866

123   0   0.0 ( 0 )
 Added by Alistair Walker
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hubble Space Telescope V,I photometry of stars in the Large Magellanic Cloud Cluster NGC 1866 shows a well defined cluster main sequence down to V=25 mag, with little contamination from field or foreground stars. We use the main sequence fitting procedure to link the distance of NGC 1866 to the Hipparcos determination of the distance for the Hyades MS stars, making use of evolutionary prescriptions to allow for differences in the chemical composition. On this basis we find a true distance modulus for NGC 1866 of 18.35 +/- 0.05 mag. If the cluster is assumed to lie in the LMC plane then the LMC modulus is 0.02 mag less.



rate research

Read More

99 - E. Brocato 2003
We present {it Hubble Space Telescope} {it V,I} photometry of the central region of the LMC cluster NGC 1866, reaching magnitudes as faint as V=27 mag. We find evidence that the cluster luminosity function shows a strong dependence on the distance from the cluster center, with a clear deficiency of low luminosity stars in the inner region. We discuss a {it global} cluster luminosity function as obtained from stars in all the investigated region, which appears in impressive agreement with the prediction from a Salpeter mass distribution. We also revisit the use of NGC 1866 as a probe for determining the efficiency of core overshooting, and conclude that a definitive answer to this question is not possible from this cluster.
110 - Vincenzo Testa 1999
We present a new deep (down to V ~ 24) photometry of a wide region (6x 6) around the LMC globular cluster NGC1866: our sample is complete, down to 3 mag below the brightest MS star. Detailed comparisons with various theoretical scenarios using models computed with the evolutionary code FRANEC have been done reaching the following conclusions: both standard models (i.e. computed by adopting the Schwarzschild criterion to fix the border of the convective core) and models with an enlarged convective core (overshooting) lead to a fair fit of the MS but are not able to reproduce the luminosity and/or the number of He burning giants. Models including a fraction of 30% of binaries leads to a good fit both to the MS luminosity function and to the He clump, if standards models are considered, for a visual distance modulus (m-M)v = 18.8, age t ~ 100 Myr and mass function slope alpha ~ 2.4, thus largely removing the classical discrepancy between observed and predicted number of stars in the He burning clump. The fit obtained with models computed with an enlarged convective core gets worse when a binary component is taken into account, because the presence of binary systems increases the existing discrepancy between the observed and predicted clump luminosity. As a consequence of this analysis, we conclude that the next step towards a proper understanding of NGC 1866, and similar clusters, must include the accurate determination of the frequency of binary systems that will be hopefully performed with the incoming Cycle 8 HST observations of NGC~1866.
We present a theoretical investigation of multifilter (U,B,V, I and K) light and radial velocity curves of five Classical Cepheids in NGC 1866, a young massive cluster of the Large Magellanic Cloud. The best fit models accounting for the luminosity and radial velocity variations of the five selected variables, four pulsating in the fundamental mode and one in the first overtone, provide direct estimates of their intrinsic stellar parameters and individual distances. The resulting stellar properties indicate a slightly brighter Mass Luminosity relation than the canonical one, possibly due to mild overshooting and/or mass loss. As for the inferred distances, the individual values are consistent within the uncertainties. Moreover, their weighted mean value corresponds to a distance modulus of 18.56 + - 0.03 (stat) + - 0.1 (syst) mag, in agreement with several independent results in the literature.
58 - M. Salaris 2003
We use the Main Sequence stars in the LMC cluster NGC 1866 and of Red Clump stars in the local field to obtain two independent estimates of the LMC distance. We apply an empirical Main Sequence-fitting technique based on a large sample of subdwarfs with accurate {sl Hipparcos} parallaxes in order to estimate the cluster distance modulus, and the multicolor Red Clump method to derive distance and reddening of the LMC field. We find that the Main Sequence-fitting and the Red Clump distance moduli are in significant disagreement; NGC 1866 distance is equal to $rm (m-M)_{0,NGC 1866}=18.33pm$0.08 (consistent with a previous estimate using the same data and theoretical Main Sequence isochrones), while the field stars provide $rm (m-M)_{0,field}=18.53pm$0.07. This difference reflects the more general dichotomy in the LMC distance estimates found in the literature. Various possible causes for this disagreement are explored, with particular attention paid to the still uncertain metallicity of the cluster and the star formation history of the field stars.
We present Hubble Space Telescope ACS deep photometry of the intermediate-age globular cluster NGC 1783 in the Large Magellanic Cloud. By using this photometric dataset, we have determined the degree of ellipticity of the cluster ($epsilon$=0.14$pm$0.03) and the radial density profile. This profile is well reproduced by a standard King model with an extended core (r_c=24.5) and a low concentration (c=1.16), indicating that the cluster has not experienced the collapse of the core. We also derived the cluster age, by using the Pisa Evolutionary Library (PEL) isochrones, with three different amount of overshooting (namely, $Lambda_{os}$=0.0, 0.10 and 0.25). From the comparison of the observed Color-Magnitude Diagram (CMD) and Main Sequence (MS) Luminosity Function (LF) with the theoretical isochrones and LFs, we find that only models with the inclusion of some overshooting ($Lambda_{os}$=0.10-0.25) are able to reproduce the observables. By using the magnitude difference $delta V_{SGB}^{He-Cl}=0.90$ between the mean level of the He-clump and the flat region of the SGB, we derive an age $tau$=1.4$pm$0.2 Gyr.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا