The recent identification of the perpendicular mode of radio polarization as the primary one in the Vela pulsar by Lai et al. (2001) is interpreted in terms of the maser mechanism proposed by Luo & Melrose (1995). We suggest that such a mechanism may also be operative for the parallel mode which opens up the possibility of accounting for all types of polarization observed in pulsars. We propose an alternative interpretation of the arcs in the nebular X-radiation observed by Pavlov et al.(2000) & Helfand et al. (2001) with the Chandra Observatory, and interpreted by the latter as an equatorial wind. We interpret the arcs as traces of the particle beams from the two magnetic poles at the shock front. We also propose that the alignment with the rotation axis of the jet-like feature bisecting the arcs is an effect of projection on the sky plane and that there is no physical jet along the axis of rotation.
We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45, using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 degree diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2*3 degrees area south of the pulsar known as Vela-X. The LAT flux is signicantly spatially extended with a best-fit radius of 0.88 +/- 0.12 degrees for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power-law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux above 100 MeV of (4.73 +/- 0.63 +/- 1.32) * 10^{-7} cm^{-2} s^{-1}. The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula (PWN) system and favor a scenario with two distinct electron populations.
We report on the spectral (pulse averaged) and timing analysis of the ~ 20 ksec observation of the X-ray binary pulsar Vela X-1 performed during the BeppoSAX Science Verification Phase. The source was observed in two different intensity states: the low state is probably due to an erratic intensity dip and shows a decrease of a factor ~ 2 in intensity, and a factor 10 in Nh. We have not been able to fit the 2-100 keV continuum spectrum with the standard (for an X--ray pulsar) power law modified by a high energy cutoff because of the flattening of the spectrum in ~ 10-30 keV. The timing analysis confirms previous results: the pulse profile changes from a five-peak structure for energies less than 15 keV, to a simpler two-peak shape at higher energies. The Fourier analysis shows a very complex harmonic component: up to 23 harmonics are clearly visible in the power spectrum, with a dominant first harmonic for low energy data, and a second one as the more prominent for energies greater than 15 keV. The aperiodic component in the Vela X-1 power spectrum presents a knee at about 1 Hz. The pulse period, corrected for binary motion, is 283.206 +/- 0.001 sec.
The Vela,X pulsar wind nebula (PWN) is characterized by the extended radio nebula (ERN) and the central X-ray cocoon. We have interpreted the $gamma$-ray spectral properties of the cocoon in the sibling paper (Bao et al.,2019); here, we account for the broadband photon spectrum of the ERN. Since the diffusive escape of the electrons from the TeV emitting region is expected to play an insignificant role in shaping the spectrum of the ERN, we attribute the GeV cutoff of the ERN to the reverse shock-PWN interaction. Due to the disruption of the reverse shock, most of plasma of the PWN is driven into the ERN. During the subsequent reverberation phase, the ERN could be compressed by a large factor in radius, and the magnetic field in the ERN is thus significantly enhanced, burning off the high energy electrons. We thus obtain the electron spectrum of the ERN and the broadband spectrum of the ERN are explained satisfactorily.
Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae (PWNe) are observed in the radio, optical, x-rays and, in some cases, also at TeV energies, but the lack of information in the gamma-ray band prevents from drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission, probing multivavelength PWN models, and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified Galactic gamma-ray sources.
PSR J1833-1034 and its associated Pulsar Wind Nebula (PWN) has been investigated in depth through X-ray observations ranging from 0.1 to 200 keV. The low energy X-ray data from Chandra reveal a complex morphology that is characterised by a bright central plerion, no thermal shell and an extended diffuse halo. The spectral emission from the central plerion softens with radial distance from the pulsar, with the spectral index ranging from $Gamma $ = 1.61 in the central region to $Gamma $ =2.36 at the edge of the PWN. At higher energy INTEGRAL detected the source in the 17--200 keV range. The data analysis clearly shows that the main contribution to the spectral emission in the hard X-ray energy range is originated from the PWN, while the pulsar is dominant above 200 keV. Recent HESS observations in the high energy gamma-ray domain show that PSR J1833-1034 is a bright TeV emitter, with a flux corresponding to $sim$2 per cent of the Crab in 1--10 TeV range. In addition the spectral shape in the TeV energy region matches well with that in the hard X-rays observed by INTEGRAL. Based on these findings, we conclude that the emission from the pulsar and its associated PWN can be described in a scenario where hard X-rays are produced through synchrotron light of electrons with Lorentz factor $gammasim10^{9}$ in a magnetic field of $sim$10 micro Gauss. In this hypothesis the TeV emission is due to Inverse Compton interaction of the cooled electrons off the Cosmic Microwave Background photons. Search for PSR J1833-1034 X-ray pulsed emission, via RXTE and Swift X-ray observations, resulted in an upper limit that is about 50 per cent.
Log in to be able to interact and post comments
comments
Fetching comments
Sorry, something went wrong while fetching comments!
V. Radhakrishnan Raman Researchn Institute
,Bangalore
.
(2001)
.
"Vela, its X-ray nebula, and the polarization of pulsar radiation"
.
Avinash A. Deshpande
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا