No Arabic abstract
The Vela,X pulsar wind nebula (PWN) is characterized by the extended radio nebula (ERN) and the central X-ray cocoon. We have interpreted the $gamma$-ray spectral properties of the cocoon in the sibling paper (Bao et al.,2019); here, we account for the broadband photon spectrum of the ERN. Since the diffusive escape of the electrons from the TeV emitting region is expected to play an insignificant role in shaping the spectrum of the ERN, we attribute the GeV cutoff of the ERN to the reverse shock-PWN interaction. Due to the disruption of the reverse shock, most of plasma of the PWN is driven into the ERN. During the subsequent reverberation phase, the ERN could be compressed by a large factor in radius, and the magnetic field in the ERN is thus significantly enhanced, burning off the high energy electrons. We thus obtain the electron spectrum of the ERN and the broadband spectrum of the ERN are explained satisfactorily.
High-energy particle transport in pulsar wind nebulae (PWNe) plays an essential role in explaining the characteristics revealed in multiwavelength observations. In this paper, the TeV-gamma-ray-emitting electrons in the Vela X PWN are approximated to be injected impulsively when the cocoon is formed due to the interaction between the SNR reverse shock and the PWN. By solving the diffusion-loss equation analytically, we reproduce the broadband spectral energy distribution and surface brightness profile simultaneously. The diffusion coefficient of TeV electrons and positrons, which is well constrained by the spectral and spatial properties of the TeV nebula, is thus determined to be $1 times 10^{26}$,cm$^{2}$,s$^{-1}$ for 10,TeV electrons and positrons. This coefficient is more than three orders of magnitude lower than that in the interstellar medium, in agreement with a constraint recently obtained from HAWC observations of a TeV nebula associated with the Geminga pulsar. These results suggest that slow diffusion of high-energy particles might be common in PWNe.
Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae (PWNe) are observed in the radio, optical, x-rays and, in some cases, also at TeV energies, but the lack of information in the gamma-ray band prevents from drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission, probing multivavelength PWN models, and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified Galactic gamma-ray sources.
We have observed the Vela pulsar region at TeV energies using the 3.8 m imaging Cherenkov telescope near Woomera, South Australia every year since 1992. This is the first concerted search for pulsed and unpulsed emission from the Vela region, and the imaging technique also allows the location of the emission within the field of view to be examined. A significant excess of gamma-ray-like events is found offset from the Vela pulsar to the southeast by about 0.13deg. The excess shows the behavior expected of gamma-ray images when the asymmetry cut is applied to the data. There is no evidence for the emission being modulated with the pulsar period -- in contrast to earlier claims of signals from the Vela pulsar direction.
We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45, using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 degree diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2*3 degrees area south of the pulsar known as Vela-X. The LAT flux is signicantly spatially extended with a best-fit radius of 0.88 +/- 0.12 degrees for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power-law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux above 100 MeV of (4.73 +/- 0.63 +/- 1.32) * 10^{-7} cm^{-2} s^{-1}. The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula (PWN) system and favor a scenario with two distinct electron populations.
The recent identification of the perpendicular mode of radio polarization as the primary one in the Vela pulsar by Lai et al. (2001) is interpreted in terms of the maser mechanism proposed by Luo & Melrose (1995). We suggest that such a mechanism may also be operative for the parallel mode which opens up the possibility of accounting for all types of polarization observed in pulsars. We propose an alternative interpretation of the arcs in the nebular X-radiation observed by Pavlov et al.(2000) & Helfand et al. (2001) with the Chandra Observatory, and interpreted by the latter as an equatorial wind. We interpret the arcs as traces of the particle beams from the two magnetic poles at the shock front. We also propose that the alignment with the rotation axis of the jet-like feature bisecting the arcs is an effect of projection on the sky plane and that there is no physical jet along the axis of rotation.