Do you want to publish a course? Click here

M33: A Galaxy with No Supermassive Black Hole

297   0   0.0 ( 0 )
 Added by Karl Gebhardt
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxies that contain bulges appear to contain central black holes whose masses correlate with the velocity dispersion of the bulge. We show that no corresponding relationship applies in the pure disk galaxy M33. Three-integral dynamical models fit Hubble Space Telescope WFPC2 photometry and STIS spectroscopy best if the central black hole mass is zero. The upper limit is 1500 M_sun. This is significantly below the mass expected from the velocity dispersion of the nucleus and far below any mass predicted from the disk kinematics. Our results suggest that supermassive black holes are associated only with galaxy bulges and not with their disks.



rate research

Read More

123 - Anil Seth 2014
Ultracompact dwarf galaxies (UCDs) are among the densest stellar systems in the universe. These systems have masses up to 200 million solar masses, but half light radii of just 3-50 parsecs. Dynamical mass estimates show that many UCDs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates are due to the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we present the detection of a supermassive black hole in a massive UCD. Adaptive optics kinematic data of M60-UCD1 show a central velocity dispersion peak above 100 km/s and modest rotation. Dynamical modeling of these data reveals the presence of a supermassive black hole with mass of 21 million solar masses. This is 15% of the objects total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1s stellar mass is consistent with its luminosity, implying many other UCDs may also host supermassive black holes. This suggests a substantial population of previously unnoticed supermassive black holes.
We present the results from an observing campaign to confirm the peculiar motion of the supermassive black hole (SMBH) in J0437+2456 first reported in Pesce et al. (2018). Deep observations with the Arecibo Observatory have yielded a detection of neutral hydrogen (HI) emission, from which we measure a recession velocity of 4910 km s$^{-1}$ for the galaxy as a whole. We have also obtained near-infrared integral field spectroscopic observations of the galactic nucleus with the Gemini North telescope, yielding spatially resolved stellar and gas kinematics with a central velocity at the innermost radii ($0.1^{prime prime} approx 34$ pc) of 4860 km s$^{-1}$. Both measurements differ significantly from the $sim$4810 km s$^{-1}$ H$_2$O megamaser velocity of the SMBH, supporting the prior indications of a velocity offset between the SMBH and its host galaxy. However, the two measurements also differ significantly from one another, and the galaxy as a whole exhibits a complex velocity structure that implies the system has recently been dynamically disturbed. These results make it clear that the SMBH is not at rest with respect to the systemic velocity of the galaxy, though the specific nature of the mobile SMBH -- i.e., whether it traces an ongoing galaxy merger, a binary black hole system, or a gravitational wave recoil event -- remains unclear.
Supermassive black hole (SMBH) binaries residing at the core of merging galaxies are recently found to be strongly affected by the rotation of their host galaxies. The highly eccentric orbits that form when the host is counterrotating emit strong bursts of gravitational waves that propel rapid SMBH binary coalescence. Most prior work, however, focused on planar orbits and a uniform rotation profile, an unlikely interaction configuration. However, the coupling between rotation and SMBH binary evolution appears to be such a strong dynamical process that it warrants further investigation. This study uses direct N-body simulations to isolate the effect of galaxy rotation in more realistic interactions. In particular, we systematically vary the SMBH orbital plane with respect to the galaxy rotation axis, the radial extent of the rotating component, and the initial eccentricity of the SMBH binary orbit. We find that the initial orbital plane orientation and eccentricity alone can change the inspiral time by an order of magnitude. Because SMBH binary inspiral and merger is such a loud gravitational wave source, these studies are critical for the future gravitational wave detector, LISA, an ESA/NASA mission currently set to launch by 2034.
It has been recently suggested that supermassive black holes at z = 5-6 might form from super-fast (dot M > 10^4 Msun/yr) accretion occurring in unstable, massive nuclear gas disks produced by mergers of Milky-Way size galaxies. Interestingly, such mechanism is claimed to work also for gas enriched to solar metallicity. These results are based on an idealized polytropic equation of state assumption, essentially preventing the gas from cooling. We show that under more realistic conditions, the disk rapidly (< 1 yr) cools, the accretion rate drops, and the central core can grow only to approx 100 Msun. In addition, most of the disk becomes gravitationally unstable in about 100 yr, further quenching the accretion. We conclude that this scenario encounters a number of difficulties that possibly make it untenable.
During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form a supermassive black hole binary; this binary can eject stars via 3-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone -- this is the well-known final parsec problem. However it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N larger than 500K, we find that the evolution of the SMBH binary is convergent, and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of SMBH binary settles into an orbit that is in a corotation resonance with the background rotating model, and the coalescence time is roughly few hundred Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا