Do you want to publish a course? Click here

2 um Narrow-band Adaptive Optics Imaging in the Arches Cluster

52   0   0.0 ( 0 )
 Added by Robert Blum
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Canada-France-Hawaii-Telescope adaptive optics bonnette images through narrow-band filters in the $K-$band are presented for the Arches cluster. Continuum fluxes, line fluxes, and equivalent widths are derived from high angular resolution images, some near diffraction limited, for the well known massive stars in the Arches cluster. Images were obtained in the lines of ion{He}{1} 2.06 mic, ion{H}{1} Br$gamma$ (2.17 mic), and ion{He}{2} 2.19 mic as well as continuum positions at 2.03 mic, 2.14 mic, and 2.26 mic. In addition, fluxes are presented for ion{H}{1} P$alpha$ (1.87 mic) and a nearby continuum position (1.90 mic) from Hubble Space Telescope archival data. The 2 mic and P$alpha$ data reveal two new emission-line stars and three fainter candidate emission-line objects. Indications for a spectral change of one object between earlier observations in 1992/1993 and our data from 1999 are found. The ratio of ion{He}{2} 2.19 mic to Br$gamma$ emission exhibits a narrow distribution among the stars, suggesting a narrow evolutionary spread centered predominantly on spectral types O4 If or Wolf-Rayet stars of the WN7 sub-type. From the approximate spectral types of the identified emission-line stars and comparisons with evolutionary models we infer a cluster age between $sim$ 2 and 4.5 Myr.



rate research

Read More

We present preliminary results of the first near-infrared variability study of the Arches cluster, using adaptive optics data from NIRI/Gemini and NACO/VLT. The goal is to discover eclipsing binaries in this young (2.5 $pm$ 0.5 Myr), dense, massive cluster for which we will determine accurate fundamental parameters with subsequent spectroscopy. Given that the Arches cluster contains more than 200 Wolf-Rayet and O-type stars, it provides a rare opportunity to determine parameters for some of the most massive stars in the Galaxy.
100 - T. L. Beck 2002
We present the results of a high resolution near infrared adaptive optics survey of the young obscured star forming region NGC 2024. Out of the total 73 stars detected in the adaptive optics survey of the cluster, we find 3 binaries and one triple. The resulting companion star fraction, 7+/-3% in the separation range of 0.35-2.3 (145-950 AU), is consistent with that expected from the multiplicity of mature solar-type stars in the local neighborhood. Our survey was sensitive to faint secondaries but no companions with Delta K > 1.2 magnitudes are detected within 2 of any star. The cluster has a K luminosity function that peaks at ~12, and although our completeness limit was 17.7 magnitude at K, the faintest star we detect had a K magnitude of 16.62.
We employ the recently installed near infrared Multi-Conjugate Adaptive optics demonstrator (MAD) to determine basic properties of a newly identified, old and distant, Galactic open cluster (FSR1415). The MAD facility remarkably approaches the diffraction limit, reaching a resolution of 0.07 arcsec (in K), that is also uniform in a field of ~1.8 arcmin in diameter. The MAD facility provides photometry that is 50% complete at K~19. This corresponds to about ~2.5 mag below the cluster main sequence turn-off. This high quality data set allows us to derive an accurate heliocentric distance of ~8.6 kpc, a metallicity close to solar, and an age of ~2.5 Gyr. On the other hand, the deepness of the data allow us to reconstruct (completeness-corrected) mass functions indicating a relatively massive cluster, with a flat core MF. The VLT/MAD capabilities will therefore provide fundamental data in identifying/analyzing other faint and distant open clusters in the Galaxy III and IV quadrants.
108 - M. E. Lohr 2018
We have carried out a spectroscopic variability survey of some of the most massive stars in the Arches cluster, using K-band observations obtained with SINFONI on the VLT. One target, F2, exhibits substantial changes in radial velocity; in combination with new KMOS and archival SINFONI spectra, its primary component is found to undergo radial velocity variation with a period of 10.483+/-0.002 d and an amplitude of ~350 km/s. A secondary radial velocity curve is also marginally detectable. We reanalyse archival NAOS-CONICA photometric survey data in combination with our radial velocity results to confirm this object as an eclipsing SB2 system, and the first binary identified in the Arches. We model it as consisting of an 82+/-12 M_sun WN8-9h primary and a 60+/-8 M_sun O5-6 Ia+ secondary, and as having a slightly eccentric orbit, implying an evolutionary stage prior to strong binary interaction. As one of four X-ray bright Arches sources previously proposed as colliding-wind massive binaries, it may be only the first of several binaries to be discovered in this cluster, presenting potential challenges to recent models for the Arches age and composition. It also appears to be one of the most massive binaries detected to date; the primarys calculated initial mass of >~120 M_sun would arguably make this the most massive binary known in the Galaxy.
125 - Donald F. Figer 2002
We present and use new spectra and narrow-band images, along with previously published broad-band images, of stars in the Arches cluster to extract photometry, astrometry, equivalent width, and velocity information. The data are interpreted with a wind/atmosphere code to determine stellar temperatures, luminosities, mass-loss rates, and abundances. We have doubled the number of known emission-line stars, and we have also made the first spectroscopic identification of the main sequence for any population in the Galactic Center. We conclude that the most massive stars are bona-fide Wolf-Rayet (WR) stars and are some of the most massive stars known, having M_{initial} > 100 Msun, and prodigious winds, Mdot > 10^{-5} Msun yr^{-1}, that are enriched with helium and nitrogen; with these identifications, the Arches cluster contains about 5% of all known WR stars in the Galaxy. We find an upper limit to the velocity dispersion of 22 kms^{-1}, implying an upper limit to the cluster mass of 7(10^4) Msun within a radius of 0.23 pc; we also estimate the bulk heliocentric velocity of the cluster to be v_{cluster,odot} approximately +95 kms^{-1}.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا