Do you want to publish a course? Click here

Radio sources in the 2dF Galaxy Redshift Survey - II. Local radio luminosity functions for AGN and star-forming galaxies at 1.4 GHz

86   0   0.0 ( 0 )
 Added by Elaine M. Sadler
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have cross-matched the 1.4 GHz NRAO VLA Sky Survey (NVSS) with the first 210 fields observed in the 2dF Galaxy Redshift Survey (2dFGRS), covering an effective area of 325 square degrees (about 20% of the final 2dFGRS area). This yields a set of optical spectra of 912 candidate NVSS counterparts, of which we identify 757 as genuine radio IDs - the largest and most homogeneous set of radio-source spectra ever obtained. The 2dFGRS radio sources span the redshift range z=0.005 to 0.438, and are a mixture of active galaxies (60%) and star-forming galaxies (40%). About 25% of the 2dFGRS radio sources are spatially resolved by NVSS, and the sample includes three giant radio galaxies with projected linear size greater than 1 Mpc. The high quality of the 2dF spectra means we can usually distinguish unambiguously between AGN and star-forming galaxies. We have made a new determination of the local radio luminosity function at 1.4 GHz for both active and star-forming galaxies, and derive a local star-formation density of 0.022+/-0.004 solar masses per year per cubic Mpc. (Ho=50 km/s/Mpc).



rate research

Read More

50 - B. Mobasher 1999
Using a recently completed survey of faint (sub-mJy) radio sources, selected at 1.4 GHz, a dust-free estimate of the local star formation rate (SFR) is carried out. The sample is 50% complete to 0.2 mJy, with over 50% of the radio sources having optical counterparts brighter than R = 21.5. Spectroscopic observations of 249 optically identified radio sources have been made, using the 2-degree Field (2dF) facility at the Anglo-Australian Telescope (AAT). Redshifts and equivalent widths of several spectral features (e.g., Halpha and [OII]3727) sensitive to star formation have been measured and used to identify the star-forming and absorption-line systems. The spectroscopic sample is corrected for incompleteness and used to estimate the 1.4 GHz and Halpha luminosity functions (LFs) and luminosity density distributions. The 1.4 GHz LF of the star-forming population has a much steeper faint-end slope (1.85) than that for the ellipticals (1.35). This implies an increasing preponderance of star-forming galaxies among the optically identified (i.e., z < 1) radio sources at fainter flux densities. The Halpha LF of the faint radio population agrees with published Halpha LFs derived from local samples selected by Halpha emission. This suggests that the star-forming faint radio population is coincident with the Halpha selected galaxies. The 1.4 GHz and Halpha luminosity densities have been used to estimate the SFRs. The two estimates agree, both giving a SFR density of $0.032 M_odot yr^{-1} Mpc^{-3}$ in the range z < 1.
The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) is a radio continuum survey at 76-227 MHz of the entire southern sky (Declination $<+30deg$) with an angular resolution of $approx 2$ arcmin. In this paper, we combine GLEAM data with optical spectroscopy from the 6dF Galaxy Survey to construct a sample of 1,590 local (median $z approx 0.064$) radio sources with $S_{200,mathrm{MHz}} > 55$ mJy across an area of $approx 16,700~mathrm{deg}^{2}$. From the optical spectra, we identify the dominant physical process responsible for the radio emission from each galaxy: 73 per cent are fuelled by an active galactic nucleus (AGN) and 27 per cent by star formation. We present the local radio luminosity function for AGN and star-forming galaxies at 200 MHz and characterise the typical radio spectra of these two populations between 76 MHz and $sim 1$ GHz. For the AGN, the median spectral index between 200 MHz and $sim 1$ GHz, $alpha_{mathrm{high}}$, is $-0.600 pm 0.010$ (where $S propto u^{alpha}$) and the median spectral index within the GLEAM band, $alpha_{mathrm{low}}$, is $-0.704 pm 0.011$. For the star-forming galaxies, the median value of $alpha_{mathrm{high}}$ is $-0.650 pm 0.010$ and the median value of $alpha_{mathrm{low}}$ is $-0.596 pm 0.015$. Among the AGN population, flat-spectrum sources are more common at lower radio luminosity, suggesting the existence of a significant population of weak radio AGN that remain core-dominated even at low frequencies. However, around 4 per cent of local radio AGN have ultra-steep radio spectra at low frequencies ($alpha_{mathrm{low}} < -1.2$). These ultra-steep-spectrum sources span a wide range in radio luminosity, and further work is needed to clarify their nature.
The clustering properties of local, S_{1.4 GHz} > 1 mJy, radio sources are investigated for a sample of 820 objects drawn from the joint use of the FIRST and 2dF Galaxy Redshift surveys. To this aim, we present 271 new bj < 19.45 spectroscopic counterparts of FIRST radio sources to be added to those already introduced in Magliocchetti et al. (2002). The two-point correlation function for the local radio population is found to be entirely consistent with estimates obtained for the whole sample of 2dFGRS galaxies. We estimate the parameters of the real-space correlation function xi(r)=(r/r_0)^{-gamma}, r_0=6.7^{+0.9}_{-1.1} Mpc and gamma=1.6pm 0.1, where h=0.7 is assumed. Different results are instead obtained if we only consider sources that present signatures of AGN activity in their spectra. These objects are shown to be very strongly correlated, with r_0=10.9^{+1.0}_{-1.2} Mpc and gamma=2pm 0.1, a steeper slope than has been claimed in other recent works. No difference is found in the clustering properties of radio-AGNs of different radio luminosity. These results show that AGN-fuelled sources reside in dark matter halos more massive than sim 10^{13.4} M_{sun}},higher the corresponding figure for radio-quiet QSOs. This value can be converted into a minimum black hole mass associated with radio-loud, AGN-fuelled objects of M_{BH}^{min}sim 10^9 M_{sun}. The above results then suggest -at least for relatively faint radio objects -the existence of a threshold black hole mass associated with the onset of significant radio activity such as that of radio-loud AGNs; however, once the activity is triggered, there appears to be no evidence for a connection between black hole mass and level of radio output. (abridged)
We combine the 2MASS extended source catalogue and the 2dFGRS to produce an IR selected galaxy catalogue with 17,173 measured redshifts. We use this extensive dataset to estimate the J and K-band galaxy luminosity functions. The LFs are fairly well fit by Schechter functions with J: M*-5log h= -22.36+/-0.02, alpha= -0.93+/-0.04, Phi=0.0104+/-0.0016 h^3/Mpc^3 and K: M*-5log h= -23.44+/-0.03, alpha=-0.96+/-0.05, Phi=0.0108+/-0.0016 h^3/Mpc^3 (2MASS Kron magnitudes). These parameters assume a cosmological model with Omega=0.3 and Lambda=0.7. With datasets of this size, systematic rather than random errors are the dominant source of uncertainty in the determination of the LF. We carry out a careful investigation of possible systematic effects in our data. The surface brightness distribution of the sample shows no evidence that significant numbers of low surface brightness or compact galaxies are missed by the survey. We estimate the present-day distributions of B-K and J-K colours as a function of absolute magnitude and use models of the galaxy stellar populations, constrained by the observed optical and infrared colours, to infer the galaxy stellar mass function. Integrated over all galaxy masses, this yields a total mass fraction in stars (in units of the critical mass density) of Omega_*.h= (1.6+/-0.24)/10^3 for a Kennicutt IMF and Omega_*.h= (2.9+/-0.43)/10^3 for a Salpeter IMF. These values agree with those inferred from observational estimates of the star formation history of the universe provided that dust extinction corrections are modest.
108 - S.R. Folkes , S. Ronen , I. Price 1999
We describe the 2dF Galaxy Redshift Survey (2dFGRS), and the current status of the observations. In this exploratory paper, we apply a Principal Component Analysis to a preliminary sample of 5869 galaxy spectra and use the two most significant components to split the sample into five spectral classes. These classes are defined by considering visual classifications of a subset of the 2dF spectra, and also by comparing to high quality spectra of local galaxies. We calculate a luminosity function for each of the different classes and find that later-type galaxies have a fainter characteristic magnitude, and a steeper faint-end slope. For the whole sample we find M*=-19.7 (for Omega=1, H_0=100 km/sec/Mpc), alpha=-1.3, phi*=0.017. For class 1 (`early-type) we find M*=-19.6, alpha=-0.7, while for class 5 (`late-type) we find M*=-19.0, alpha=-1.7. The derived 2dF luminosity functions agree well with other recent luminosity function estimates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا