Do you want to publish a course? Click here

Timescale Stretch Parameterization of Type Ia Supernova B-band Light Curves

235   0   0.0 ( 0 )
 Added by Gerson Goldhaber
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

R-band intensity measurements along the light curve of Type Ia supernovae discovered by the Supernova Cosmology Project (SCP) are fitted in brightness to templates allowing a free parameter the time-axis width factor w = s(1+z). The data points are then individually aligned in the time-axis, normalized and K-corrected back to the rest frame, after which the nearly 1300 normalized intensity measurements are found to lie on a well-determined common rest-frame B-band curve which we call the ``composite curve. The same procedure is applied to 18 low-redshift Calan/Tololo SNe with z < 0.11; these nearly 300 B-band photometry points are found to lie on the composite curve equally well. The SCP search technique produces several measurements before maximum light for each supernova. We demonstrate that the linear stretch factor, s, which parameterizes the light-curve timescale appears independent of z,and applies equally well to the declining and rising parts of the light curve. In fact, the B-band template that best fits this composite curve fits the individual supernova photometry data when stretched by a factor s with chi^2/DoF approx = 1, thus as well as any parameterization can, given the current data sets. The measurement of the date of explosion, however, is model dependent and not tightly constrained by the current data. We also demonstrate the 1+z light-curve time-axis broadening expected from cosmological expansion. This argues strongly against alternative explanations, such as tired light, for the redshift of distant objects.



rate research

Read More

CCD BVRI photometry is presented for type Ia supernova 2008gy. The light curves match the template curves for fast-declining SN Ia, but the colors appear redder than average, and the SN may also be slightly subluminous. SN 2008gy is found to be located far outside the boundaries of three nearest galaxies, each of them has nearly equal probability to be the host galaxy.
Upcoming high-cadence transient survey programmes will produce a wealth of observational data for Type Ia supernovae. These data sets will contain numerous events detected very early in their evolution, shortly after explosion. Here, we present synthetic light curves, calculated with the radiation hydrodynamical approach Stella for a number of different explosion models, specifically focusing on these first few days after explosion. We show that overall the early light curve evolution is similar for most of the investigated models. Characteristic imprints are induced by radioactive material located close to the surface. However, these are very similar to the signatures expected from ejecta-CSM or ejecta-companion interaction. Apart from the pure deflagration explosion models, none of our synthetic light curves exhibit the commonly assumed power-law rise. We demonstrate that this can lead to substantial errors in the determination of the time of explosion. In summary, we illustrate with our calculations that even with very early data an identification of specific explosion scenarios is challenging, if only photometric observations are available.
91 - S. I. Blinnikov 2006
We present synthetic bolometric and broad-band UBVRI light curves of SNe Ia, for four selected 3-D deflagration models of thermonuclear supernovae. The light curves are computed with the 1-D hydro code STELLA, which models (multi-group time-dependent) non-equilibrium radiative transfer inside SN ejecta. Angle-averaged results from 3-D hydrodynamical explosion simulations with the composition determined in a nucleosynthetic postprocessing step served as the input to the radiative transfer model. The predicted model UBV light curves do agree reasonably well with the observed ones for SNe Ia in the range of low to normal luminosities, although the underlying hydrodynamical explosion models produced only a modest amount of radioactive Ni56 and relatively low kinetic energy in the explosion. The evolution of predicted B and V fluxes in the model with a Ni56 mass of 0.42 M_sun follows the observed decline rate after the maximum very well, although the behavior of fluxes in other filters somewhat deviates from observations, and the bolometric decline rate is a bit slow. Using our models, we check the validity of Arnetts rule and the accuracy of the procedure for extracting the Ni56 mass from the observed light curves. We find that the comparison between theoretical light curves and observations provides a useful tool to validate SN Ia models. The steps necessary to improve the agreement between theory and observations are set out.
The detailed nature of type Ia supernovae (SNe Ia) remains uncertain, and as survey statistics increase, the question of astrophysical systematic uncertainties arises, notably that of the evolution of SN Ia populations. We study the dependence on redshift of the SN Ia light-curve stretch, a purely intrinsic SN property, to probe its potential redshift drift. The SN stretch has been shown to be strongly correlated with the SN environment, notably with stellar age tracers. We modeled the underlying stretch distribution as a function of redshift, using the evolution of the fraction of young and old SNe Ia as predicted using the SNfactory dataset, and assuming a constant underlying stretch distribution for each age population consisting of Gaussian mixtures. We tested our prediction against published samples that were cut to have marginal magnitude selection effects so that any observed change is indeed astrophysical and not observational in origin. In this first study, there are indications that the underlying SN Ia stretch distribution evolves as a function of redshift, and that the age drifting model is a better description of the data than any time-constant model, including the sample-based asymmetric distributions that are often used to correct Malmquist bias at a significance higher than 5 $sigma$. The favored underlying stretch model is a bimodal one, composed of a high-stretch mode shared by both young and old environments, and a low-stretch mode that is exclusive to old environments. The precise effect of the redshift evolution of the intrinsic properties of a SN Ia population on cosmology remains to be studied. The astrophysical drift of the SN stretch distribution does affect current Malmquist bias corrections and hence the distances that are derived using SNe that are affected by observational selection effects. This bias increases with surveys covering larger redshift ranges.
We present a revised SALT2 surface (`SALT2-2021) for fitting the light curves of Type Ia supernovae (SNe Ia), which incorporates new measurements of zero-point calibration offsets and Milky Way extinction. The most notable change in the new surface occurs in the UV region. This new surface alters the distance measurements of SNe~Ia, which can be used to investigate the nature of dark energy by probing the expansion history of the Universe. Using the revised SALT2 surface on public data from the first three years of the Dark Energy Survey Supernova Program (combined with an external low-$z$ SNe Ia sample) and combining with cosmic microwave background constraints, we find a change in the dark energy equation of state parameter, $Delta w = 0.015 pm 0.004$. This result highlights the continued importance of controlling and reducing systematic uncertainties, particularly with the next generation of supernova analyses aiming to improve constraints on dark energy properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا