No Arabic abstract
We present the first detections of the black hole X-ray binary GRS 1915+105 at sub-millimetre wavelengths. We clearly detect the source at 350 GHz on two epochs, with significant variability over the 24 hr between epochs. Quasi-simultaneous radio monitoring indicates an approximately flat spectrum from 2 - 350 GHz, although there is marginal evidence for a minimum in the spectrum between 15 - 350 GHz. The flat spectrum and correlated variability imply that the sub-mm emission arises from the same synchrotron source as the radio emission. This source is likely to be a quasi-steady partially self-absorbed jet, in which case these sub-mm observations probe significantly closer to the base of the jet than do radio observations and may be used in future as a valuable diagnostic of the disc:jet connection in this source.
We report the results of a systematic timing analysis of all archival Rossi X-Ray Timing Explorer (RXTE) observations of the bright black-hole binary GRS 1915+105 in order to detect high-frequency quasi-periodic oscillations (HFQPO). We produced power-density spectra in two energy bands and limited the analysis to the frequency range 30-1000 Hz. We found 51 peaks with a single trial significance larger than 3 sigma. As all but three have centroid frequencies that are distributed between 63 and 71 Hz, we consider most of them significant regardless of the number of trials involved. The average centroid frequency and FWHM are 67.3 +/- 2.0 Hz and 4.4 +/- 2.4 Hz respectively. Their fractional rms varies between 0.4% and 2% (total band detections) and between 0.5% and 3% (hard ban detections). As GRS 1915+105 shows large variability on time scales longer than 1s, we analysed the data in 16s intervals and found that the detections are limited to a specific region in the colour-colour diagram, corresponding to state B of the source, when the energy spectrum is dominated by a bright accretion disk component. However, the rms spectrum of the HFQPO is very hard and does not show a flattening up to 40 keV, where the fractional rms reaches 11%. We discuss our findings in terms of current proposed models and compare them with the results on other black-hole binaries and neutron-star binaries.
A scenario for a periodic filling and emptying of the accretion disc of the microquasar GRS 1915+105 is proposed, by computing the mass transfer rate from the evolving low mass red giant donor (Greiner at al. 2001) and comparing it with the observed accretion rate onto the primary black hole. We propose a duty-cycle with (5-10)(eta/0.1) per cent active ON-state where eta is the efficiency of converting accretion into radiation. The duration of the quiescent recurrent OFF-state is identified as the viscosity time scale at the circularization radius and equals 370(alpha/0.001)^(-4/5) years, where alpha is the viscosity parameter in the alpha-prescription of a classical disc. If the viscosity at the outer edge of the disc is small and eta is close to the maximum available potential energy (per rest mass energy) at the innermost stable orbit, the present active phase may last another 10 - 20 years.
We present simultaneous infrared and X-ray observations of the Galactic microquasar GRS 1915+105 using the Palomar 5-m telescope and Rossi X-ray Timing Explorer on July 10, 1998 UT. Over the course of 5 hours, we observed 6 faint infrared (IR) flares with peak amplitudes of $sim 0.3-0.6 $ mJy and durations of $sim 500-600 $ seconds. These flares are associated with X-ray soft-dip/soft-flare cycles, as opposed to the brighter IR flares associated with X-ray hard-dip/soft-flare cycles seen in August 1997 by Eikenberry et al. (1998). Interestingly, the IR flares begin {it before} the X-ray oscillations, implying an ``outside-in origin of the IR/X-ray cycle. We also show that the quasi-steady IR excess in August 1997 is due to the pile-up of similar faint flares. We discuss the implications of this flaring behavior for understanding jet formation in microquasars.
I report the detection of circular polarisation, associated with relativistic ejections, from the `microquasar GRS 1915+105. I further compare detections and limits of circular polarisation and circular-to-linear polarisation ratios in other X-ray binaries. Since in at least two cases the dominance of linear over circular polarisation or vice versa is a function of frequency, this seems to indicate that this is a strong function of depolarisation in the source. Furthermore, I note that circular polarisation has only been detected from sources whose jets lie close to the plane of the sky, whereas we have quite stringent limits on the circular polarisation of jets which lie close to the line of sight.
Most models of the low frequency quasi periodic oscillations (QPOs) in low-mass X-ray binaries (LMXBs) explain the dynamical properties of those QPOs. On the other hand, in recent years reverberation models that assume a lamp-post geometry have been successfull in explaining the energy-dependent time lags of the broad-band noise component in stellar mass black-holes and active galactic nuclei. We have recently shown that Comptonisation can explain the spectral-timing properties of the kilo-hertz (kHz) QPOs observed in neutron star (NS) LMXBs. It is therefore worth exploring whether the same family of models would be as successful in explaining the low-frequency QPOs. In this work, we use a Comptonisation model to study the frequency dependence of the phase lags of the type-C QPO in the BH LMXB GRS 1915+105. The phase lags of the QPO in GRS 1915+105 make a transition from hard to soft at a QPO frequency of around 1.8 Hz. Our model shows that at high QPO frequencies a large corona of ~ 100-150 R_g covers most of the accretion disc and makes it 100% feedback dominated, thus producing soft lags. As the observed QPO frequency decreases, the corona gradually shrinks down to around 3-17 R_g, and at 1.8 Hz feedback onto the disc becomes inefficient leading to hard lags. We discuss how changes in the accretion geometry affect the timing properties of the type-C QPO.