Do you want to publish a course? Click here

Dynamics of Individual Specialization and Global Diversification in Communities

52   0   0.0 ( 0 )
 Added by Sanjay Jain
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss a model of an economic community consisting of $N$ interacting agents. The state of each agent at any time is characterized, in general, by a mixed strategy profile drawn from a space of $s$ pure strategies. The community evolves as agents update their strategy profiles in response to payoffs received from other agents. The evolution equation is a generalization of the replicator equation. We argue that when $N$ is sufficiently large and the payoff matrix elements satisfy suitable inequalities, the community evolves to retain the full diversity of available strategies even as individual agents specialize to pure strategies.



rate research

Read More

Most theories of evolutionary diversification are based on equilibrium assumptions: they are either based on optimality arguments involving static fitness landscapes, or they assume that populations first evolve to an equilibrium state before diversification occurs, as exemplified by the concept of evolutionary branching points in adaptive dynamics theory. Recent results indicate that adaptive dynamics may often not converge to equilibrium points and instead generate complicated trajectories if evolution takes place in high-dimensional phenotype spaces. Even though some analytical results on diversification in complex phenotype spaces are available, to study this problem in general we need to reconstruct individual-based models from the adaptive dynamics generating the non-equilibrium dynamics. Here we first provide a method to construct individual-based models such that they faithfully reproduce the given adaptive dynamics attractor without diversification. We then show that a propensity to diversify can by introduced by adding Gaussian competition terms that generate frequency dependence while still preserving the same adaptive dynamics. For sufficiently strong competition, the disruptive selection generated by frequency-dependence overcomes the directional evolution along the selection gradient and leads to diversification in phenotypic directions that are orthogonal to the selection gradient.
Many empirical networks have community structure, in which nodes are densely interconnected within each community (i.e., a group of nodes) and sparsely across different communities. Like other local and meso-scale structure of networks, communities are generally heterogeneous in various aspects such as the size, density of edges, connectivity to other communities and significance. In the present study, we propose a method to statistically test the significance of individual communities in a given network. Compared to the previous methods, the present algorithm is unique in that it accepts different community-detection algorithms and the corresponding quality function for single communities. The present method requires that a quality of each community can be quantified and that community detection is performed as optimisation of such a quality function summed over the communities. Various community detection algorithms including modularity maximisation and graph partitioning meet this criterion. Our method estimates a distribution of the quality function for randomised networks to calculate a likelihood of each community in the given network. We illustrate our algorithm by synthetic and empirical networks.
Many complex adaptive systems contain a large diversity of specialized components. The specialization at the level of the microscopic degrees of freedom, and diversity at the level of the system as a whole are phenomena that appear during the course of evolution of the system. We present a mathematical model to describe these evolutionary phenomena in economic communities. The model is a generalization of the replicator equation. The economic motivation for the model and its relationship with some other game theoretic models applied to ecology and sociobiology is discussed. Some results about the attractors of this dynamical system are described. We argue that while the microscopic variables -- the agents comprising the community -- act locally and independently, time evolution produces a collective behaviour in the system characterized by individual specialization of the agents as well as global diversity in the community. This occurs for generic values of the parameters and initial conditions provided the community is sufficiently large, and can be viewed as a kind of self-organization in the system. The context dependence of acceptable innovations in the community appears naturally in this framework.
In the face of serious infectious diseases, governments endeavour to implement containment measures such as public vaccination at a macroscopic level. Meanwhile, individuals tend to protect themselves by avoiding contacts with infections at a microscopic level. However, a comprehensive understanding of how such combined strategy influences epidemic dynamics is still lacking. We study a susceptible-infected-susceptible epidemic model with imperfect vaccination on dynamic contact networks, where the macroscopic intervention is represented by random vaccination of the population and the microscopic protection is characterised by susceptible individuals rewiring contacts from infective neighbours. In particular, the model is formulated both in populations without and then with demographic effects. Using the pairwise approximation and the probability generating function approach, we investigate both dynamics of the epidemic and the underlying network. For populations without demography, the emerging degree correlations, bistable states, and oscillations demonstrate the combined effects of the public vaccination program and individual protective behavior. Compared to either strategy in isolation, the combination of public vaccination and individual protection is more effective in preventing and controlling the spread of infectious diseases by increasing both the invasion threshold and the persistence threshold. For populations with additional demographic factors, the integration between vaccination intervention and individual rewiring may promote epidemic spreading due to the birth effect. Moreover, the degree distributions of both networks in the steady state is closely related to the degree distribution of newborns, which leads to uncorrelated connectivity. All the results demonstrate the importance of both local protection and global intervention, as well as the demographic effects.
Enhanced ind-sheaves provide a suitable framework for the irregular Riemann-Hilbert correspondence. In this paper, we show how Satos specialization and microlocalization functors have a natural enhancement, and discuss some of their properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا