No Arabic abstract
Many complex adaptive systems contain a large diversity of specialized components. The specialization at the level of the microscopic degrees of freedom, and diversity at the level of the system as a whole are phenomena that appear during the course of evolution of the system. We present a mathematical model to describe these evolutionary phenomena in economic communities. The model is a generalization of the replicator equation. The economic motivation for the model and its relationship with some other game theoretic models applied to ecology and sociobiology is discussed. Some results about the attractors of this dynamical system are described. We argue that while the microscopic variables -- the agents comprising the community -- act locally and independently, time evolution produces a collective behaviour in the system characterized by individual specialization of the agents as well as global diversity in the community. This occurs for generic values of the parameters and initial conditions provided the community is sufficiently large, and can be viewed as a kind of self-organization in the system. The context dependence of acceptable innovations in the community appears naturally in this framework.
Tumours are made up of a mixed population of different types of cells that include normal struc- tures as well as ones associated with the malignancy, and there are multiple interactions between the malignant cells and the local microenvironment. These intercellular interactions, modulated by the microenvironment, effect tumour progression and represent a largely under appreciated therapeutic target. We use observations of primary tumor biology from prostate cancer to extrapolate a math- ematical model: specifically; it has been observed that in prostate cancer three disparate cellular outcomes predominate: (i) the tumour remains well differentiated and clinically indolent - in this case the local stromal cells may act to restrain the growth of the cancer; (ii) early in its genesis the tumour acquires a highly malignant phenotype, growing rapidly and displacing the original stromal population (often referred to as small cell prostate cancer) - these less common aggressive tumours are relatively independent of the local microenvironment; and, (iii) the tumour co-opts the local stroma - taking on a classic stromagenic phenotype where interactions with the local microenviron- ment are critical to the cancer growth. We present an evolutionary game theoretical construct that models the influence of tumour-stroma interactions in driving these outcomes. We consider three characteristic and distinct cellular populations: stromal cells, tumour cells that are self-reliant in terms of microenvironmental factors and tumour cells that depend on the environment for resources but can also co-opt stroma. Using evolutionary game theory we explore a number of different sce- narios that elucidate the impact of tumour-stromal interactions on the dynamics of prostate cancer growth and progression and how different treatments in the metastatic setting can affect different types of tumors.
Punishment may deter antisocial behavior. Yet to punish is costly, and the costs often do not offset the gains that are due to elevated levels of cooperation. However, the effectiveness of punishment depends not only on how costly it is, but also on the circumstances defining the social dilemma. Using the snowdrift game as the basis, we have conducted a series of economic experiments to determine whether severe punishment is more effective than mild punishment. We have observed that severe punishment is not necessarily more effective, even if the cost of punishment is identical in both cases. The benefits of severe punishment become evident only under extremely adverse conditions, when to cooperate is highly improbable in the absence of sanctions. If cooperation is likely, mild punishment is not less effective and leads to higher average payoffs, and is thus the much preferred alternative. Presented results suggest that the positive effects of punishment stem not only from imposed fines, but may also have a psychological background. Small fines can do wonders in motivating us to chose cooperation over defection, but without the paralyzing effect that may be brought about by large fines. The later should be utilized only when absolutely necessary.
The force of the ethnic separatism, essentially origining from negative effect of ethnic identity, is damaging the stability and harmony of multiethnic countries. In order to eliminate the foundation of the ethnic separatism and set up a harmonious ethnic relationship, some scholars have proposed a viewpoint: ethnic harmony could be promoted by popularizing civic identity. However, this viewpoint is discussed only from a philosophical prospective and still lack supports of scientific evidences. Because ethic group and ethnic identity are products of evolution and ethnic identity is the parochialism strategy under the perspective of game theory, this paper proposes an evolutionary game simulation model to study the relationship between civic identity and ethnic conflict based on evolutionary game theory. The simulation results indicate that: 1) the ratio of individuals with civic identity has a positive association with the frequency of ethnic conflicts; 2) ethnic conflict will not die out by killing all ethnic members once for all, and it also cannot be reduced by a forcible pressure, i.e., increasing the ratio of individuals with civic identity; 3) the average frequencies of conflicts can stay in a low level by promoting civic identity periodically and persistently.
In this work, an ensemble of economic interacting agents is considered. The agents are arranged in a linear array where only local couplings are allowed. The deterministic dynamics of each agent is given by a map. This map is expressed by two factors. The first one is a linear term that models the expansion of the agents economy and that is controlled by the {it growth capacity parameter}. The second one is an inhibition exponential term that is regulated by the {it local environmental pressure}. Depending on the parameter setting, the system can display Pareto or Boltzmann-Gibbs behavior in the asymptotic dynamical regime. The regions of parameter space where the system exhibits one of these two statistical behaviors are delimited. Other properties of the system, such as the mean wealth, the standard deviation and the Gini coefficient, are also calculated.
Animals use a wide variety of strategies to reduce or avoid aggression in conflicts over resources. These strategies range from sharing resources without outward signs of conflict to the development of dominance hierarchies, in which initial fighting is followed by the submission of subordinates. Although models have been developed to analyze specific strategies for resolving conflicts over resources, little work has focused on trying to understand why particular strategies are more likely to arise in certain situations. In this paper, we use a model based on an iterated Hawk--Dove game to analyze how resource holding potentials (RHPs) and other factors affect whether sharing, dominance relationships, or other behaviours are evolutionarily stable. We find through extensive numerical simulations that sharing is stable only when the cost of fighting is low and the animals in a contest have similar RHPs, whereas dominance relationships are stable in most other situations. We also explore what happens when animals are unable to assess each others RHPs without fighting, and we compare a range of strategies for this problem using simulations. We find (1) that the most successful strategies involve a limited period of assessment followed by a stable relationship in which fights are avoided and (2) that the duration of assessment depends both on the costliness of fighting and on the difference between the animals RHPs. Along with our direct work on modeling and simulations, we develop extensive software to facilitate further testing; it is available at url{https://bitbucket.org/CameronLHall/dominancesharingassessmentmatlab/}.