Do you want to publish a course? Click here

Energy Extrapolation in Quantum Optimization Algorithms

512   0   0.0 ( 0 )
 Added by Chenfeng Cao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum annealing and the variational quantum eigensolver are two promising quantum algorithms to find the ground state of complicated Hamiltonians on near-term quantum devices. However, it is necessary to limit the evolution time or the circuit depth as much as possible since otherwise decoherence will degrade the computation. Even when this is done, there always exists a non-negligible estimation error in the ground state energy. Here we propose a scalable extrapolation approach to mitigate this error. With an appropriate regression, we can significantly improve the estimation accuracy for quantum annealing and variational quantum eigensolver for fixed quantum resources. The inference is achieved by extrapolating the annealing time to infinity or extrapolating the variance to zero. The only additional overhead is an increase in the number of measurements by a constant factor. We verified the validity of our method with the transverse-field Ising model. The method is robust to noise, and the techniques are applicable to other physics problems. Analytic derivations for the quadratic convergence feature of the residual energy in quantum annealing and the linear convergence feature of energy variance are given.



rate research

Read More

While recent work suggests that quantum computers can speed up the solution of semidefinite programs, little is known about the quantum complexity of more general convex optimization. We present a quantum algorithm that can optimize a convex function over an $n$-dimensional convex body using $tilde{O}(n)$ queries to oracles that evaluate the objective function and determine membership in the convex body. This represents a quadratic improvement over the best-known classical algorithm. We also study limitations on the power of quantum computers for general convex optimization, showing that it requires $tilde{Omega}(sqrt n)$ evaluation queries and $Omega(sqrt{n})$ membership queries.
Universal fault-tolerant quantum computers will require error-free execution of long sequences of quantum gate operations, which is expected to involve millions of physical qubits. Before the full power of such machines will be available, near-term quantum devices will provide several hundred qubits and limited error correction. Still, there is a realistic prospect to run useful algorithms within the limited circuit depth of such devices. Particularly promising are optimization algorithms that follow a hybrid approach: the aim is to steer a highly entangled state on a quantum system to a target state that minimizes a cost function via variation of some gate parameters. This variational approach can be used both for classical optimization problems as well as for problems in quantum chemistry. The challenge is to converge to the target state given the limited coherence time and connectivity of the qubits. In this context, the quantum volume as a metric to compare the power of near-term quantum devices is discussed. With focus on chemistry applications, a general description of variational algorithms is provided and the mapping from fermions to qubits is explained. Coupled-cluster and heuristic trial wave-functions are considered for efficiently finding molecular ground states. Furthermore, simple error-mitigation schemes are introduced that could improve the accuracy of determining ground-state energies. Advancing these techniques may lead to near-term demonstrations of useful quantum computation with systems containing several hundred qubits.
Despite extensive research efforts, few quantum algorithms for classical optimization demonstrate realizable advantage. The utility of many quantum algorithms is limited by high requisite circuit depth and nonconvex optimization landscapes. We tackle these challenges to quantum advantage with two new variational quantum algorithms, which utilize multi-basis graph encodings and nonlinear activation functions to outperform existing methods with shallow quantum circuits. Additionally, both algorithms provide a polynomial reduction in measurement complexity and either a factor of two speedup textit{or} a factor of two reduction in quantum resources. Typically, the classical simulation of such algorithms with many qubits is impossible due to the exponential scaling of traditional quantum formalism and the limitations of tensor networks. Nonetheless, the shallow circuits and moderate entanglement of our algorithms, combined with efficient tensor method-based simulation, enable us to successfully optimize the MaxCut of high-connectivity graphs with up to $512$ nodes (qubits) on a single GPU.
We investigate two classes of quantum control problems by using frequency-domain optimization algorithms in the context of ultrafast laser control of quantum systems. In the first class, the system model is known and a frequency-domain gradient-based optimization algorithm is applied to searching for an optimal control field to selectively and robustly manipulate the population transfer in atomic Rubidium. The other class of quantum control problems involves an experimental system with an unknown model. In the case, we introduce a differential evolution algorithm with a mixed strategy to search for optimal control fields and demonstrate the capability in an ultrafast laser control experiment for the fragmentation of Pr(hfac)$_3$ molecules.
We study the performance scaling of three quantum algorithms for combinatorial optimization: measurement-feedback coherent Ising machines (MFB-CIM), discrete adiabatic quantum computation (DAQC), and the Durr-Hoyer algorithm for quantum minimum finding (DH-QMF) that is based on Grovers search. We use MaxCut problems as our reference for comparison, and time-to-solution (TTS) as a practical measure of performance for these optimization algorithms. We empirically observe a $Theta(2^{sqrt{n}})$ scaling for the median TTS for MFB-CIM, in comparison to the exponential scaling with the exponent $n$ for DAQC and the provable $widetilde{mathcal O}left(sqrt{2^n}right)$ scaling for DH-QMF. We conclude that these scaling complexities result in a dramatic performance advantage for MFB-CIM in comparison to the other two algorithms for solving MaxCut problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا