Salient object detection is a fundamental topic in computer vision. Previous methods based on RGB-D often suffer from the incompatibility of multi-modal feature fusion and the insufficiency of multi-scale feature aggregation. To tackle these two dilemmas, we propose a novel multi-modal and multi-scale refined network (M2RNet). Three essential components are presented in this network. The nested dual attention module (NDAM) explicitly exploits the combined features of RGB and depth flows. The adjacent interactive aggregation module (AIAM) gradually integrates the neighbor features of high, middle and low levels. The joint hybrid optimization loss (JHOL) makes the predictions have a prominent outline. Extensive experiments demonstrate that our method outperforms other state-of-the-art approaches.
Salient object detection(SOD) aims at locating the most significant object within a given image. In recent years, great progress has been made in applying SOD on many vision tasks. The depth map could provide additional spatial prior and boundary cues to boost the performance. Combining the depth information with image data obtained from standard visual cameras has been widely used in recent SOD works, however, introducing depth information in a suboptimal fusion strategy may have negative influence in the performance of SOD. In this paper, we discuss about the advantages of the so-called progressive multi-scale fusion method and propose a mask-guided feature aggregation module(MGFA). The proposed framework can effectively combine the two features of different modalities and, furthermore, alleviate the impact of erroneous depth features, which are inevitably caused by the variation of depth quality. We further introduce a mask-guided refinement module(MGRM) to complement the high-level semantic features and reduce the irrelevant features from multi-scale fusion, leading to an overall refinement of detection. Experiments on five challenging benchmarks demonstrate that the proposed method outperforms 11 state-of-the-art methods under different evaluation metrics.
Depth maps contain geometric clues for assisting Salient Object Detection (SOD). In this paper, we propose a novel Cross-Modal Weighting (CMW) strategy to encourage comprehensive interactions between RGB and depth channels for RGB-D SOD. Specifically, three RGB-depth interaction modules, named CMW-L, CMW-M and CMW-H, are developed to deal with respectively low-, middle- and high-level cross-modal information fusion. These modules use Depth-to-RGB Weighing (DW) and RGB-to-RGB Weighting (RW) to allow rich cross-modal and cross-scale interactions among feature layers generated by different network blocks. To effectively train the proposed Cross-Modal Weighting Network (CMWNet), we design a composite loss function that summarizes the errors between intermediate predictions and ground truth over different scales. With all these novel components working together, CMWNet effectively fuses information from RGB and depth channels, and meanwhile explores object localization and details across scales. Thorough evaluations demonstrate CMWNet consistently outperforms 15 state-of-the-art RGB-D SOD methods on seven popular benchmarks.
Deep-learning based salient object detection methods achieve great progress. However, the variable scale and unknown category of salient objects are great challenges all the time. These are closely related to the utilization of multi-level and multi-scale features. In this paper, we propose the aggregate interaction modules to integrate the features from adjacent levels, in which less noise is introduced because of only using small up-/down-sampling rates. To obtain more efficient multi-scale features from the integrated features, the self-interaction modules are embedded in each decoder unit. Besides, the class imbalance issue caused by the scale variation weakens the effect of the binary cross entropy loss and results in the spatial inconsistency of the predictions. Therefore, we exploit the consistency-enhanced loss to highlight the fore-/back-ground difference and preserve the intra-class consistency. Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches. The source code will be publicly available at https://github.com/lartpang/MINet.
Existing RGB-D salient object detection (SOD) models usually treat RGB and depth as independent information and design separate networks for feature extraction from each. Such schemes can easily be constrained by a limited amount of training data or over-reliance on an elaborately designed training process. Inspired by the observation that RGB and depth modalities actually present certain commonality in distinguishing salient objects, a novel joint learning and densely cooperative fusion (JL-DCF) architecture is designed to learn from both RGB and depth inputs through a shared network backbone, known as the Siamese architecture. In this paper, we propose two effective components: joint learning (JL), and densely cooperative fusion (DCF). The JL module provides robust saliency feature learning by exploiting cross-modal commonality via a Siamese network, while the DCF module is introduced for complementary feature discovery. Comprehensive experiments using five popular metrics show that the designed framework yields a robust RGB-D saliency detector with good generalization. As a result, JL-DCF significantly advances the state-of-the-art models by an average of ~2.0% (max F-measure) across seven challenging datasets. In addition, we show that JL-DCF is readily applicable to other related multi-modal detection tasks, including RGB-T (thermal infrared) SOD and video SOD, achieving comparable or even better performance against state-of-the-art methods. We also link JL-DCF to the RGB-D semantic segmentation field, showing its capability of outperforming several semantic segmentation models on the task of RGB-D SOD. These facts further confirm that the proposed framework could offer a potential solution for various applications and provide more insight into the cross-modal complementarity task.
The main purpose of RGB-D salient object detection (SOD) is how to better integrate and utilize cross-modal fusion information. In this paper, we explore these issues from a new perspective. We integrate the features of different modalities through densely connected structures and use their mixed features to generate dynamic filters with receptive fields of different sizes. In the end, we implement a kind of more flexible and efficient multi-scale cross-modal feature processing, i.e. dynamic dilated pyramid module. In order to make the predictions have sharper edges and consistent saliency regions, we design a hybrid enhanced loss function to further optimize the results. This loss function is also validated to be effective in the single-modal RGB SOD task. In terms of six metrics, the proposed method outperforms the existing twelve methods on eight challenging benchmark datasets. A large number of experiments verify the effectiveness of the proposed module and loss function. Our code, model and results are available at url{https://github.com/lartpang/HDFNet}.