Do you want to publish a course? Click here

First detection of C$_2$H$_5$NCO in the ISM and search of other isocyanates towards the G+0.693-0.027 molecular cloud

263   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Little is known about the chemistry of isocyanates (compounds with the functional group R-N=C=O) in the interstellar medium, as only four of them have been detected so far: isocyanate radical (NCO), isocyanic acid (HNCO), N-protonated isocyanic acid (H$_2$NCO$^+$) and methyl isocyanate (CH$_3$NCO). The molecular cloud G+0.693-0.027, located in the Galactic Centre, represents an excellent candidate to search for new isocyanates since it exhibits high abundances of the simplest ones, HNCO and CH$_3$NCO. After CH$_3$NCO, the next complex isocyanates are ethyl isocyanate (C$_2$H$_5$NCO) and vinyl isocyanate (C$_2$H$_3$NCO). Their detection in the ISM would enhance our understanding of the formation of these compounds in space. We have detected C$_2$H$_5$NCO and H$_2$NCO$^+$ towards G+0.693-0.027 (the former for the first time in the interstellar medium) with molecular abundances of (4.7$-$7.3)$times$10$^{-11}$ and (1.0$-$1.5)$times$10$^{-11}$, respectively. A ratio CH$_3$NCO / C$_2$H$_5$NCO = 8$pm$1 is obtained; therefore the relative abundance determined for HNCO:CH$_3$NCO:C$_2$H$_5$NCO is 1:1/55:1/447, which implies a decrease by more than one order of magnitude going progressively from HNCO to CH$_3$NCO and to C$_2$H$_5$NCO. This is similar to what has been found for e.g. alcohols and thiols and suggests that C$_2$H$_5$NCO is likely formed on the surface of dust grains. In addition, we have obtained column density ratios of HNCO / NCO > 269, HNCO / H$_2$NCO$^+$ $sim$ 2100 and C$_2$H$_3$NCO / C$_2$H$_5$NCO~<~4. A comparison of the Methyl~/~Ethyl ratios for isocyanates (-NCO), alcohols (-OH), formiates (HCOO-), nitriles (-CN) and thiols (-SH) is performed and shows that ethyl-derivatives may be formed more efficiently for the N-bearing molecules than for the O- and S-bearing molecules.



rate research

Read More

The chemical compounds carrying the thiol group (-SH) have been considered essential in recent prebiotic studies regarding the polymerization of amino acids. We have searched for this kind of compounds toward the Galactic Centre quiescent cloud G+0.693-0.027. We report the first detection in the interstellar space of the trans-isomer of monothioformic acid (t-HC(O)SH) with an abundance of $sim,$1$,times,$10$^{-10}$. Additionally, we provide a solid confirmation of the gauche isomer of ethyl mercaptan (g-C$_2$H$_5$SH) with an abundance of $sim,$3$,times,$10$^{-10}$, and we also detect methyl mercaptan (CH$_3$SH) with an abundance of $sim,$5$,times,$10$^{-9}$. Abundance ratios were calculated for the three SH-bearing species and their OH-analogues, revealing similar trends between alcohols and thiols with increasing complexity. Possible chemical routes for the interstellar synthesis of t-HC(O)SH, CH$_3$SH and C$_2$H$_5$SH are discussed, as well as the relevance of these compounds in the synthesis of prebiotic proteins in the primitive Earth.
We report the first detection in space of the cumulene carbon chain $l$-H$_2$C$_5$. A total of eleven rotational transitions, with $J_{up}$ = 7-10 and $K_a$ = 0 and 1, were detected in TMC-1 in the 31.0-50.4 GHz range using the Yebes 40m radio telescope. We derive a column density of (1.8$pm$0.5)$times$10$^{10}$ cm$^{-2}$. In addition, we report observations of other cumulene carbenes detected previously in TMC-1, to compare their abundances with the newly detected cumulene carbene chain. We find that $l$-H$_2$C$_5$ is $sim$4.0 times less abundant than the larger cumulene carbene $l$-H$_2$C$_6$, while it is $sim$300 and $sim$500 times less abundant than the shorter chains $l$-H$_2$C$_3$ and $l$-H$_2$C$_4$. We discuss the most likely gas-phase chemical routes to these cumulenes in TMC-1 and stress that chemical kinetics studies able to distinguish between different isomers are needed to shed light on the chemistry of C$_n$H$_2$ isomers with $n$,$>$,3.
142 - M. Steglich , J. Fulara , S. Maity 2015
The $1 ^3Sigma_u^- leftarrow X^3Sigma_g^-$ transition of linear HC$_5$H (A) has been observed in a neon matrix and gas phase. The assignment is based on mass-selective experiments, extrapolation of previous results of the longer HC$_{2n+1}$H homologues, and density functional and multi-state CASPT2 theoretical methods. Another band system starting at 303 nm in neon is assigned as the $1 ^1 A_1 leftarrow X ^1 A_1$ transition of the cumulene carbene pentatetraenylidene H$_2$C$_5$ (B).
We report observations of the reactive molecular ions OH$^+$, H$_2$O$^+$, and H$_3$O$^+$ towards Orion KL with Herschel/HIFI. All three $N=1-0$ fine-structure transitions of OH$^+$ at 909, 971, and 1033GHz and both fine-structure components of the doublet {it ortho}-H$_2$O$^+$ $1_{11}-0_{00}$ transition at 1115 and 1139GHz were detected; an upper limit was obtained for H$_3$O$^+$. OH$^+$ and H$_2$O$^+$ are observed purely in absorption, showing a narrow component at the source velocity of 9 kms$^{-1}$, and a broad blueshifted absorption similar to that reported recently for HF and {it para}-H$_{2}^{18}$O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH$^+$ and H$_2$O$^+$ for the 9 km s$^{-1}$ component of $9 pm 3 times 10^{12}$cm$^{-2}$ and $7 pm 2 times 10^{12}$cm$^{-2}$, and those in the outflow of $1.9 pm 0.7 times 10^{13}$cm$^{-2}$ and $1.0 pm 0.3 times 10^{13}$cm$^{-2}$. Upper limits of $2.4times 10^{12}$cm$^{-2}$ and $8.7times 10^{12}$cm$^{-2}$ were derived for the column densities of {it ortho} and {it para}-H$_3$O$^+$ from transitions near 985 and 1657GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate.
187 - J. R. Dawson 2013
The accumulation, compression and cooling of the ambient interstellar medium (ISM) in large-scale flows powered by OB cluster feedback can drive the production of dense molecular clouds. We review the current state of the field, with a strong focus on the explicit modelling and observation of the neutral interstellar medium. Magneto-hydrodynamic simulations of colliding ISM flows provide a strong theoretical framework in which to view feedback-driven cloud formation, as do models of the gravitational fragmentation of expanding shells. Rapid theoretical developments are accompanied by growing body of observational work that provides good evidence for the formation of molecular gas via stellar feedback - both in the Milky Way and the Large Magellanic Cloud. The importance of stellar feedback compared to other major astrophysical drivers of dense gas formation remains to be investigated further, and will be an important target for future work.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا